300 resultados para Equacions abelianes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we address the problem of consistently constructing Langevin equations to describe fluctuations in nonlinear systems. Detailed balance severely restricts the choice of the random force, but we prove that this property, together with the macroscopic knowledge of the system, is not enough to determine all the properties of the random force. If the cause of the fluctuations is weakly coupled to the fluctuating variable, then the statistical properties of the random force can be completely specified. For variables odd under time reversal, microscopic reversibility and weak coupling impose symmetry relations on the variable-dependent Onsager coefficients. We then analyze the fluctuations in two cases: Brownian motion in position space and an asymmetric diode, for which the analysis based in the master equation approach is known. We find that, to the order of validity of the Langevin equation proposed here, the phenomenological theory is in agreement with the results predicted by more microscopic models

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas¿low-density-liquid (LDL) critical point, and the other in a gas¿high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This reply adds a number of details to remarks by Foong and Kanno [preceding Comment, Phys. Rev. A 46, 5296 (1992)] on our paper [Phys. Rev. A 45, 2222 (1992)] regarding the discontinuities observed in the curves generated in that paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for d=2 and 3, with particular emphasis devoted to the various roughening exponents. Besides confirming recent estimates of some exponents, new quantities are monitored, and their critical exponents computed. Among other results, it is shown that the three-dimensional exponents do not coincide with the Bak-Tang-Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] (Abelian) model, and that the dynamical exponent as computed from the correlation length and from the roughness of the energy profile do not necessarily coincide, as is usually implicitly assumed. An explanation for this is provided. The possibility of comparing these results with those obtained from renormalization group arguments is also briefly addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We deal with a classical predictive mechanical system of two spinless charges where radiation is considered and there are no external fields. The terms (2,2)Paa of the expansion in the charges of the HamiltonJacobi momenta are calculated. Using these, together with known previous results, we can obtain the paa up to the fourth order. Then we have calculated the radiated energy and the 3-momentum in a scattering process as functions of the impact parameter and the incident energy for the former and 3-momentum for the latter. Scattering cross-sections are also calculated. Good agreement with well known results, including those of quantum electrodynamics, has been found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generalized KerrSchild space-times for a perfect-fluid source are investigated. New Petrov type D perfect fluid solutions are obtained starting from conformally flat perfect-fluid metrics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some generalized soliton solutions of the cosmological EinsteinRosen type defined in the space-time region t2=z2 in terms of canonical coordinates are considered. Vacuum solutions are studied and interpreted as cosmological models. Fluid solutions are also considered and are seen to represent inhomogeneous cosmological models that become homogeneous at t?8. A subset of them evolve toward isotropic FriedmannRobertsonWalker metrics.