881 resultados para Equações de ondas não-lineares


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Matemática e as Ciências Farmacêuticas encontram-se relacionadas desde há muito, no entanto, foi a partir do séc. XVII, período de notável agitação cultural e científico que os métodos experimentais foram sustentados com cálculos matemáticos. Esta ciência e as técnicas de modelagem matemática tornaram-se numa ferramenta amplamente utilizada, de tal modo, que nos dias de hoje são consideradas como fundamentais na generalidade das profissões e em especial nas Ciências Farmacêuticas. Contudo, para muitos ainda não é vista como fundamental e essencial para a formação de futuros farmacêuticos. Deste modo, pretende-se demonstrar como a Matemática e as técnicas de modelagem se tornaram ao longo dos anos nesta poderosa ferramenta. Quer pelos instrumentos, quer pelas competências que nos proporcionam. Pretende-se também, com recurso aos conteúdos programáticos desta unidade curricular, avaliar se os conhecimentos, sistemas de avaliação e distribuição da carga horária são efetuados de forma homogénea pelas diferentes instituições portuguesas, públicas ou privadas que lecionam o Mestrado Integrado em Ciências Farmacêuticas. Verificou-se que a Matemática é uma ciência plena de capacidades e recursos e que estabelece uma relação interdisciplinar com as Ciências Farmacêuticas. Quer pela componente utilitária, quer pela componente formativa que proporciona. A análise dos conteúdos programáticos demonstra que apesar de serem transversais, as Universidades que não lecionam Sistemas de Equações Lineares e Equações diferenciais deveriam faze-lo e também realizarem um melhor controlo da carga horária por temática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada ao Programa de Pós-graduação em Administração da Universidade Municipal de são Caetano do Sul

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os satélites para sensoriamento remoto atualmente dispoívies à comunidade científica possuem diferenies resoluções espaciais, por exemplo: SPOT 20 e 10 metros, LANDSAT-TM 30 metros e NOA-AVHRR 1100 metros. Essa resolução frequentemente não é grande o suficiente para um grande número de aplicações que necessitam de uma percepção da cena mais detalhada. Muitas vezes, no interior de uma célula de resolução (pixel) mais de uma classe ocorre. Este caso é conhecido como pixel mistura. Na classificação de imagens obtidas por sensoriamento remoto é comum a utilização de metodologias que atribuem somente uma classe a um pixel, como o procedimento clássico da máxima verossimilhança. Esse procedimento resulta frequentemente em uma estimação errônea das áreas ocupadas pelas classes presentes na cena. Em alguns casos, especialmente quando não há uma classe dominante, isto pode ser a fonte de um erro significativo. Desde o início dos anos 70, diferentes metodologias têm sido propostas para o trabalho num nível de subpixel. A grande vantagem do trabalho nesse nível é que um pixel não é necessariamente atribuído a somente uma classe. O pixel tem um grau que o correlaciona a cada classe: de zero(se a classe não ocorre no pixel) até 1 (a classe ocorre no pixel inteiro). Assim, cada pixel tem um vetor associado que estima a proporção de cada classe nele. A metodologia mais comumente utilizada considera a refletância do pixel mistura como uma combinação linear da refletância média de cada classe componente. De acordo com essa visão as refletâncias associadas às classes componentes são consideradas constantes conhecidas i.e., não são variáveis aleatórias. Assim, a proporção de cada classe no pixel é obtida pela resolução de um sistema de equações lineares. Uma outra metodologia é assumir as refletâncias que caracterizam as classes como sendo variáveis aleatórias. Nesta visão, as informações a respeito das distribuições das classes é utilizada. A estimativa das proporções de cada classe é obtida pelo vetor de proporções que maximiza a função de verossimilhança. Mais recentemente, uma visão diferente foi proposta: a utilização da lógica fuzzy. Esta metodologia utiliza o conceito de função de pertinência que é essencial à teoria dos conjuntos fuzzy. Esta função utiliza elementos com natureza estatística ou não para a estimação das proporções. No presente trabalho, duas funções de pertinência foram definidas: a primeira baseada na função densidade probabilidade gaussiana e a segunda baseada diretamente na distância de Mahalanobis. O objetivo deste estudo é avaliar cada uma das metodologias anteriores em termos de acurácia, performance e dados necessários. Para este objetivo, as metodologias foram implementadas computacionalmente e alimentadas com imagens LANDSAT-TM. Para a avaliação da acurácia dos modelos um estudo qualitativo foi executado.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As equações da cinétiica pontual de um reator nuclear térmico são integradas numericamente, utilizando um método matricial de continuação analitica. Essas equações são essencialmente não-negativas e possuem um autovalor dominante vinculado à reatividade do sistema. Também, descrevem-se os métodos de Hansen e Porsching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho apresentam-se pocedimentos para análise não linear de estruturas de materiais compostos laminados reforçados por fibras. A formulação é baseada em uma descrição cinemática incremental Lagrangeana Total, que permite o tratamento de deslocamentos arbitrariamente grandes com pequenas deformações, utilizando elementos finitos tridimensionais degenerados deduzidos para a análise de cascas. As estruturas são consideradas como submetidas a cargas mecânicas e a ações de temperatura e de umidade. O material é suposto elástico linear com propriedades dependentes, ou não, dos valores da temperatura e da concentração de umidade, ou viscoelástico linear com uma relação constitutiva em integral hereditária , e com comportamento higrotermo-reologicamente simples. As lâminas são consideradas como sujeitas a falhas, as quais são detectadas através de critérios macroscópicos, baseados em tensões ou em deformações. As equações não lineares de equilíbrio são resolvidas através de procedimentos iterativos e as deformações dependentes do tempo são avaliadas pelo método das variáveis de estado. Diversos exemplos numéricos de estruturas submetidas à flexão, flambagem elástica e viscoelástica e falhas são apresentados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O caos e a incoerência nas interações conservativas de três ondas e a transição súbita para o caos na equação não linear de Klein Gordon são estudados. É analisada a influência da presença de caos sobre a incoerência no problema da interação de um tripleto de ondas quando um modelo de aproximação adiabática deixa de ser válido. É encontrado um limiar para o valor do descasamento do tripleto de ondas, abaixo do qual a coerência e o acoplamento entre as ondas é o comportamento dominante. Na equação não linear de Klein Gordon estudou-se a transição entre um regime de dinâmica modulacional para um de caos espaço temporal e foi encontrada uma curva crítica no plano amplitude-frequência que o divide em regiões onde só existe transição para o caos caso o valor de amplitude exceder um certo limiar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usamos a teoria quase-linear para estudar os efeitos do transporte radial de partículas na eficiência da geração de corrente por ondas do tipo híbrida inferior (lower hybrid ou LH), em um tokamak modelado como uma lâmina. Nossos resultados numéricos foram obtidos com cinco diferentes modelos do termo de transporte e indicaram que embora a potência absorvida e a corrente gerada possam ser modificadas por efeito do transporte, a proporção de variação dessas quantidades não é muito sensível a uma forma particular do termo de transporte. Na formulação quase-linear utilizada, a evolução no tempo da função distribuição de elétrons, em um dado ponto da geometria de lâmina proposta, ocorre sob a ação de ondas do tipo híbrida inferior, colisões e transporte, e é descrita pela seguinte equação: 8rfe = (8rfehH + (8rfe)COL + (8rfeh . Oterceiro termo pretende demonstrar a natureza e a magnitude dos efeitos de transporte, e é dado pela seguinte forma: (8rfeh = 8s [DT(S) 8sie] , com um coeficiente para difusão espacial dependente de posição. Utilizamos cinco formas totalmente arbitrárias para a dependência de posição, com as quais pretendemos verificar a sensibilidade do processo de geração de corrente a aspectos do termo de difusão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação de mestrado tem por assunto a representação do comportamento mecânico do concreto sob cargas de curta e longa duração, incluindo efeitos não-lineares. Para tal fim trabalha-se com equações baseadas na teoria do dano contínuo. São propostas equações para o caso triaxial e, baseado nelas, é implementado um programa computacional. Com diversos exemplos verifica-se que: a) A solução numérica aproxima bem os resultados teóricos. b) O comportamento do modelo representa bem as características qualitativas do concreto. c) O modelo permite aproximar bem alguns resultados experimentais, mas ainda deve ser aperfeiçoado, particularmente no que refere-se à identificação de parâmetros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho estudamos um sistema de equações diferenciais parabólicas que modelam um processo de difusão-reação em duas dimensões da mistura molecular e reação química irreverssível de um só passo entre duas espécies químicas A e B para formar um produto P. Apresentamos resultados analíticos e computacionais relacionados à existência e unicidade da solução, assim como estimativas do erro local e global utilizando elementos finitos. Para os resultados analíticos usamos a teoria de semigrupos e o principio do m´aximo, e a simulação numérica é feita usando diferenças finitas centrais e o esquema simplificado de Ruge-Kutta. As estimativas do erro local para o problema semi-discretizado são estabelecidas usando normas de Sobolev, e para estimar o erro global usamos shadowing finito a posteriori. Os resultados computacionais obtidos mostram que o comportamento da solução está dentro do esperado e concorda com resultados da referências. Assim mesmo as estimativas do erro local e global são obtidas para pequenos intervalos de tempo e assumindo suficiente regularidade sobre a velocidade do fluído no qual realiza-se o processo. Destacamos que a estimativa do erro global usando shadowing finito é obtida sob hipóteses a posteriori sobre o operador do problema e o forte controle da velocidade numa vizinhança suficientemente pequena.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho trata do tipo de dado intervalar e da importância da especificação de uma semântica para garantir a correção e a interpretação coerente de resultados gerados, tais como de soluções de equações envolvendo este tipo de dado. Para tanto, realiza um estudo comparativo das semânticas de envoltória intervalar de reais e de número-intervalo, procurando identificar a influência de cada uma sobre definições fundamentais, tais como as das operações aritméticas e a do tipo de solução encontrado. Uma vez caracterizadas as semânticas associadas ao tipo de dado intervalar, o trabalho apresenta resultados que permitem mapear algebricamente a operação de multiplicação de números-intervalo tanto na representação de extremo inferior e extremo superior como na representação por ponto médio e diâmetro. Com base nesses resultados apresenta os mapeamentos das expressões algébricas que definem as potências positivas inteiras tanto para a semântica de número-intervalo como para a de envoltória de reais. Conjugando os resultados obtidos com a semântica de número-intervalo, o trabalho apresenta procedimentos algorítmicos para a determinação de dois tipos de soluções de equações intervalares: solução própria, a obtida diretamente a partir da relação de igualdade estrutural algébrica entre intervalos, e envoltória intervalar de soluções reais, normalmente referenciada como a solução intervalar usual. Exemplos são apresentados para a validação dos procedimentos, bem como para a discussão do significado de cada tipo de solução sob o enfoque semântico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A equação de complexidade de um algoritmo pode ser expressa em termos de uma equação de recorrência. A partir destas equações obtém-se uma expressão assintótica para a complexidade, provada por indução. Neste trabalho, propõem-se um esquema de solução de equações de recorrência usando equações características que são resolvidas através de um "software" de computação simbólica, resultando em uma expressão algébrica exata para a complexidade. O objetivo é obter uma forma geral de calcular a complexidade de um algoritmo desenvolvido pelo método Divisão-e-Conquista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho o método LTSN é utilizado para resolver a equação de transporte de fótons para uma placa plana heterogênea, modelo de multigrupo, com núcleo de espalhamento de Klein-Nishina, obtendo-se o fluxo de fótons em valores discretos de energia. O fluxo de fótons, juntamente com os parâmetros da placa foram usados para o cálculo da taxa de dose absorvida e do fator de buildup. O método LTSN consiste na aplicação da transformada de Laplace num conjunto de equações de ordenadas discretas, fornece uma solução analítica do sistema de equações lineares algébricas e a construção dos fluxos angulares pela técnica de expansão de Heaviside. Essa formulação foi aplicada ao cálculo de dose absorvida e ao fator de Buildup, considerando cinco valores de energia. Resultados numéricos são apresentados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

o presente trabalho aborda a aplicação do método dos elementos de contorno (MEC) para solução de problemas de flexão linear e geometricamente não-linear de placas semiespessas. Os modelos de placa empregados consideraram a influência do cisalhamento através de teorias de primeira ordem, especificamente as de Mindlin e Reissner. Uma formulação integral unificada dos modelos de placa utilizados é desenvolvida para o operador de Navier do problema, onde foram mantidos alguns termos de ordem superior no tensor deformação de Green. A formulação integral do problema de membrana acoplado ao de flexão é igualment desenvolvida, levando a um sistema de equações integrais não-lineares que descreve completamente problemas de placas que envolvem grandes deslocamentos. Estas equações podem ser particularizadas para problemas de flexão linear e estabilidade elástica. Tendo em vista a necessidade de se considerar derivadas dos deslocamentos translacionais, as equações integrais correspondentes ao gradiente dos deslocamentos também foram deduzidas, caracterizando uma formulação hipersingular. o método empregado para solução numérica do sistema de equações integrais foi o método direto dos elementos de contorno. Um tratamento das integrais fortemente singulares presentes nas equações foi realizado, baseado em expansões assint6ticas dos núcleos. Deste procedimento resulta uma abordagem regularizada que emprega apenas quadraturas padrão de Gauss-Legendre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho apresenta o estudo e implementação de um algoritmo numérico para análise de escoamentos turbulentos, tridimensionais, transientes, incompressíveis e isotérmicos, através da Simulação de Grande Escalas, empregando o Método de Elementos Finitos. A modelagem matemática do problema baseia-se nas equações de conservação de massa e quantidade de movimento de um fluido quase-incompressível. Adota-se um esquema de Taylor-Galerkin, com integração reduzida e fórmulas analíticas das funções de interpolação, para o elemento hexaédrico de oito nós, com funções lineares para as componentes de velocidade e constante no elemento para a pressão. Para abordar o problema da turbulência, emprega-se a Simulação de Grandes Escalas, com modelo para escalas inferiores à resolução da malha. Foram implementados o modelo clássico de Smagorinsky e o modelo dinâmico de viscosidade turbulenta, inicialmente proposto por Germano et al, 1991. Uma nova metodologia, denominada filtragem por elementos finitos independentes, é proposta e empregada, para o processo de segunda filtragem do modelo dinâmico. O esquema, que utiliza elementos finitos independentes envolvendo cada nó da malha original, apresentou bons resultados com um baixo custo computacional adicional. São apresentados resultados para problemas clássicos, que demonstram a validade do sistema desenvolvido. A aplicabilidade do esquema utilizado, para análise de escoamentos caracterizados por elevados números de Reynolds, é discutida no capítulo final. São apresentadas sugestões para aprimorar o esquema, visando superar as dificuldades encontradas com respeito ao tempo total de processamento, para análise de escoamentos tridimensionais, turbulentos e transientes .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modelagem matemática de problemas importantes e significativos da engenharia, física e ciências sociais pode ser formulada por um conjunto misto de equações diferenciais e algébricas (EADs). Este conjunto misto de equações deve ser previamente caracterizado quanto a resolubilidade, índice diferencial e condições iniciais, para que seja possível utilizar um código computacional para resolvê-lo numericamente. Sabendo-se que o índice diferencial é o parâmetro mais importante para caracterizar um sistema de EADs, neste trabalho aplica-se a redução de índice através da teoria de grafos, proposta por Pantelides (1988). Este processo de redução de índice é realizado numericamente através do algoritmo DAGRAFO, que transforma um sistema de índice superior para um sistema reduzido de índice 0 ou 1. Após esta etapa é necessário fornecer um conjunto de condições inicias consistentes para iniciar o código numérico de integração, DASSLC. No presente trabalho discute-se três técnicas para a inicialização consistente e integração numérica de sistemas de EADs de índice superior. A primeira técnica trabalha exclusivamente com o sistema reduzido, a segunda com o sistema reduzido e as restrições adicionais que surgem após a redução do índice introduzindo variáveis de restrição, e a terceira técnica trabalha com o sistema reduzido e as derivadas das variáveis de restrição. Após vários testes, conclui-se que a primeira e terceira técnica podem gerar um conjunto solução mesmo quando recebem condições iniciais inconsistentes. Para a primeira técnica, esta característica decorre do fato que no sistema reduzido algumas restrições, muitas vezes com significado físico importante, podem ser perdidas quando as equações algébricas são diferenciadas. Trabalhando com o sistema reduzido e as derivadas das variáveis de restrição, o erro da inicialização é absorvido pelas variáveis de restrição, mascarando a precisão do código numérico. A segunda técnica adotada não tem como absorver os erros da inicialização pelas variáveis de restrição, desta forma, quando as restrições adicionais não são satisfeitas, não é gerada solução alguma. Entretanto, ao aplicar condições iniciais consistentes para todas as técnicas, conclui-se que o sistema reduzido com as derivadas das variáveis restrição é o método mais conveniente, pois apresenta melhor desempenho computacional, inclusive quando a matriz jacobiana do sistema apresenta problema de mau condicionamento, e garante que todas as restrições que compõem o sistema original estejam presentes no sistema reduzido.