946 resultados para Environmental impacts


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With increasing media exposure and evidence of environmental impacts, it is increasingly recognized that incorporating sustainability principles in construction works is both crucial and beneficial. However a recent survey reveals that among stakeholders of infrastructure projects such as roads, there is no common understanding on what constitutes sustainability in real-life projects. Sustainability has been interpreted widely and differently and as a result, sustainability outcomes are not tangible at the project level or often neglected. Under such conditions, policies and strategies on sustainability remain largely ideological and cannot be sufficiently reflected in the actual project delivery. The major difficulty of this sustainability pursuit lies in the lack of consensus among the experts on sustainability criteria and indicators. To move ahead, these criteria and indicators are to be agreed upon. This paper reviews the sustainable infrastructure development, its criteria and indicators, focusing on road infrastructure context. It goes on to introduce a Delphi study, an integral part of a QUT research, aimed at identifying critical sustainability criteria and indicators for Australian road infrastructure projects. It paves the way for further identification of solutions for each critical indicator at a subsequent stage. The criteria, indicators and solutions will be encapsulated into a decision making framework for the enhancement of sustainability deliverables. By doing so, the research will promote more integrated thinking of and consistent approaches to the sustainability agenda in road and highway infrastructure projects in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite of a significant contribution of transport sector in the global economy and society, it is one of the largest sources of global energy consumption, green house gas emissions and environmental pollutions. A complete look onto the whole life cycle environmental inventory of this sector will be helpful to generate a holistic understanding of contributory factors causing emissions. Previous studies were mainly based on segmental views which mostly compare environmental impacts of different modes of transport, but very few consider impacts other than the operational phase. Ignoring the impacts of non-operational phases, e.g., manufacture, construction, maintenance, may not accurately reflect total contributions on emissions. Moreover an integrated study for all motorized modes of road transport is also needed to achieve a holistic estimation. The objective of this study is to develop a component based life cycle inventory model which considers impacts of both operational and non-operational phases of the whole life as well as different transport modes. In particular, the whole life cycle of road transport has been segmented into vehicle, infrastructure, fuel and operational components and inventories have been conducted on each component. The inventory model has been demonstrated using the road transport of Singapore. Results show that total life cycle green house gas emissions from the road transport sector of Singapore is 7.8 million tons per year, among which operational phase and non-operational phases contribute about 55% and about 45%, respectively. Total amount of criteria air pollutants are 46, 8.5, 33.6, 13.6 and 2.6 thousand tons per year for CO, SO2, NOx, VOC and PM10, respectively. From the findings, it can be deduced that stringent government policies on emission control measures have a significant impact on reducing environmental pollutions. In combating global warming and environmental pollutions the promotion of public transport over private modes is an effective sustainable policy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Children and the environment cover a broad, interdisciplinary field of research and practice. The social sciences often use the word “environment” to mean the social, political, or economic context of children’s lives, but this bibliography covers physical settings. It focuses on a place-based scale that children can see, hear, taste, smell, touch, and navigate: not large, abstract scales such as national identities or population dynamics, or small scales such as environmental impacts on genes or cell functions. Attention to the everyday settings of children’s lives grew in the 18th century, when Romantic literature introduced the theme of children and nature. In the 19th century, concern for children’s welfare included an interest in conditions for children in burgeoning industrial cities, and justifications for early streetcar and railroad suburbs included claims that they would save children from the dangers of cities and provide the healthful benefits of natural surroundings. In the 20th century, academic disciplines developed different lines of inquiry about the impact of the physical environment on children and how children relate to places: ethnographic studies of children in different parts of the world in the fields of anthropology and geography; sociological studies of different populations of children in different settings; educational research on the learning opportunities that different school and out-of-school settings afford; medical research to understand disease vectors and the impact of pollutants on children; and efforts in the field of environment and behavior research more broadly, to understand how built and designed environments affect children physically, cognitively, socially, and emotionally. At the beginning of the 21st century, children and the environment is an active area of inquiry seeking to understand rapidly changing conditions for children as the world urbanizes, opportunities for free play outdoors and independent mobility erode in many parts of the world, media environments consume more of children’s time, and awareness grows that children need opportunities to contribute to creating sustainable societies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traffic congestion has a significant impact on the economy and environment. Encouraging the use of multimodal transport (public transport, bicycle, park’n’ride, etc.) has been identified by traffic operators as a good strategy to tackle congestion issues and its detrimental environmental impacts. A multi-modal and multi-objective trip planner provides users with various multi-modal options optimised on objectives that they prefer (cheapest, fastest, safest, etc) and has a potential to reduce congestion on both a temporal and spatial scale. The computation of multi-modal and multi-objective trips is a complicated mathematical problem, as it must integrate and utilize a diverse range of large data sets, including both road network information and public transport schedules, as well as optimising for a number of competing objectives, where fully optimising for one objective, such as travel time, can adversely affect other objectives, such as cost. The relationship between these objectives can also be quite subjective, as their priorities will vary from user to user. This paper will first outline the various data requirements and formats that are needed for the multi-modal multi-objective trip planner to operate, including static information about the physical infrastructure within Brisbane as well as real-time and historical data to predict traffic flow on the road network and the status of public transport. It will then present information on the graph data structures representing the road and public transport networks within Brisbane that are used in the trip planner to calculate optimal routes. This will allow for an investigation into the various shortest path algorithms that have been researched over the last few decades, and provide a foundation for the construction of the Multi-modal Multi-objective Trip Planner by the development of innovative new algorithms that can operate the large diverse data sets and competing objectives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australian agriculture is faced with the dilemma of increasing food production for a growing domestic and world population while decreasing environmental impacts and supporting the social and economic future of regional communities. The challenge for farmers is compounded by declining rates of productivity growth which have been linked to changes in climate and decreasing investment in agricultural research. The answer must lie in understanding the ecological functionality of landscapes and matching management of agricultural systems and use of natural resources to landscape capacity in a changing climate. A simplified mixed grain and livestock farm case study is used to illustrate the challenges of assessing the potential for shifts in land allocation between commodities to achieve sustainable intensification of nutrition production. This study highlights the risks associated with overly-simplistic solutions and the need for increased investment in research to inform the development of practical strategies for increasing food production in Australian agro-ecosystems while managing the impacts of climate change and addressing climate change mitigation policies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper understands climate change as a transformative stressor that will prompt responses from institutional governance frameworks in Australian cities. A transformative stressor is characterised as a chronic large-scale phenomenon which triggers a process of institutional change whereby institutions seek to reorientate their activities to better manage the social, economic and environmental impacts created by the transformative dynamic. It is posited that institutional change will be required as Australian metropolitan institutional governance frameworks seek to manage climate change effects in urban environments. It is argued that improved operationalisation of adaptation is required as part of a comprehensive urban response to the transformative stresses climate change and its effects are predicted to create in Australian cities. The operationalisation of adaptation refers to adaptation becoming incorporated, codified and implemented as a central principle of metro-regional planning governance. This paper has three key purposes. First, it examines theoretical and conceptual understandings of the role of transformative stressors in compelling institutional change within urban settings. Second, it establishes a conceptual approach that understands climate change as a transformative stressor requiring institutional change within the metropolitan planning frameworks of Australia's cities. Third, it offers early results and conclusions from an empirical investigation into the current prospects for operationalisation of climate adaptation in planning programs within Southeast Queensland (SEQ) via changes to institutional governance. A significant emerging conclusion is that early climate stresses appear not to be leading to episodic institutional change in the metropolitan planning frameworks of SEQ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose A knowledge-based urban development needs to be sustainable and, therefore, requires ecological planning strategies to ensure a better quality of its services. The purpose of this paper is to present an innovative approach for monitoring the sustainability of urban services and help the policy-making authorities to revise the current planning and development practices for more effective solutions. The paper introduces a new assessment tool–Micro-level Urban-ecosystem Sustainability IndeX (MUSIX) – that provides a quantitative measure of urban sustainability in a local context. Design/methodology/approach A multi-method research approach was employed in the construction of the MUSIX. A qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. A quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. Findings/results MUSIX was tested in a pilot study site and provided information referring to the main environmental impacts arising from rapid urban development and population growth. Related to that, some key ecological planning strategies were recommended to guide the preparation and assessment of development and local area plans. Research limitations/implications This study provided fundamental information that assists developers, planners and policy-makers to investigate the multidimensional nature of sustainability at the local level by capturing the environmental pressures and their driving forces in highly developed urban areas. Originality/value This study measures the sustainability of urban development plans through providing data analysis and interpretation of results in a new spatial data unit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some of Queensland's regions are experiencing rapid changes related to the recent and growing capacity to more effectively exploit significant energy sources. These changes have triggered land-use conflicts between the mining sector and other economic sectors, mainly agriculture. These conflicts fuel existing uncertainty surrounding the current and future economic, social and environmental impacts of extractive industries. This paper explores the concept of uncertainty as it applies to planning for resource-based regions through a scoping analysis of regional stakeholders' perceptions of land-use uncertainty. It then investigates solutions to alleviate such an issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years a number of urban sustainability assessment frameworks are developed to better inform policy formulation and decision-making processes. This paper introduces one of these attempts in developing a comprehensive assessment tool—i.e., Micro-level Urban-ecosystem Sustainability IndeX (MUSIX). Being an indicator-based indexing model, MUSIX investigates the environmental impacts of land-uses on urban sustainability by measuring urban ecosystem components in local scale. The paper presents the methodology of MUSIX and demonstrates the performance of the model in a pilot test-bed—i.e., in Gold Coast, Australia. The model provides useful insights on the sustainability performance of the test-bed area. The parcel-scale findings of the indicators are used to identify local problems considering six main issues of urban development—i.e., hydrology; ecology; pollution; location; design, and; efficiency. The composite index score is used to propose betterment strategies to guide the development of local area plans in conjunction with the City's Planning Scheme. In overall, this study has shown that parcel-scale environmental data provides an overview of the local sustainability in urban areas as in the example of Gold Coast, which can also be used for setting environmental policy, objectives and targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The measures by which major developments are officially approved for construction are - by common agreement - complex, time-consuming, and of questionable merit in terms of maintaining ecological viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole System Design is increasingly being seen as one of the most cost effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system. A focus on design is critical, as the output from this stage of the project locks-in most of the economic and environmental performance of the designed system throughout its life, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers – particularly engineers, architects and industrial designers – need to be able to understand and implement a whole system design approach. This book provides a clear design methodology, based on leading efforts in the field, and is supported by worked examples that demonstrate how advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering. Chapters 1–5 outline the approach and explain how it can be implemented to enhance the established Systems Engineering framework. Chapters 6–10 demonstrate, through detailed worked examples, the application of the approach to industrial pumping systems, passenger vehicles, electronics and computer systems, temperature control of buildings, and domestic water systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Road infrastructure has been considered as one of the most expensive and extensive infrastructure assets of the built environment globally. This asset also impacts the natural environment significantly during different phases of life e.g. construction, use, maintenance and end-of-life. The growing emphasis for sustainable development to meet the needs of future generations requires mitigation of the environmental impacts of road infrastructure during all phases of life e.g. construction, operation and end-of-life disposal (as required). Life-cycle analysis (LCA), a method of quantification of all stages of life, has recently been studied to explore all the environmental components of road projects due to limitations of generic environmental assessments. The LCA ensures collection and assessment of the inputs and outputs relating to any potential environmental factor of any system throughout its life. However, absence of a defined system boundary covering all potential environmental components restricts the findings of the current LCA studies. A review of the relevant published LCA studies has identified that environmental components such as rolling resistance of pavement, effect of solar radiation on pavement(albedo), traffic congestion during construction, and roadway lighting & signals are not considered by most of the studies. These components have potentially higher weightings for environment damage than several commonly considered components such as materials, transportation and equipment. This paper presents the findings of literature review, and suggests a system boundary model for LCA study of road infrastructure projects covering potential environmental components.