980 resultados para Engineering problems
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Resumo:
Composites are engineered materials that take advantage of the particular properties of each of its two or more constituents. They are designed to be stronger, lighter and to last longer which can lead to the creation of safer protection gear, more fuel efficient transportation methods and more affordable materials, among other examples. This thesis proposes a numerical and analytical verification of an in-house developed multiscale model for predicting the mechanical behavior of composite materials with various configurations subjected to impact loading. This verification is done by comparing the results obtained with analytical and numerical solutions with the results found when using the model. The model takes into account the heterogeneity of the materials that can only be noticed at smaller length scales, based on the fundamental structural properties of each of the composite’s constituents. This model can potentially reduce or eliminate the need of costly and time consuming experiments that are necessary for material characterization since it relies strictly upon the fundamental structural properties of each of the composite’s constituents. The results from simulations using the multiscale model were compared against results from direct simulations using over-killed meshes, which considered all heterogeneities explicitly in the global scale, indicating that the model is an accurate and fast tool to model composites under impact loads. Advisor: David H. Allen
Resumo:
This work develops a computational approach for boundary and initial-value problems by using operational matrices, in order to run an evolutive process in a Hilbert space. Besides, upper bounds for errors in the solutions and in their derivatives can be estimated providing accuracy measures.
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Health safety during trips is based on previous counseling, vaccination and prevention of infections, previous diseases or specific problems related to the destination. Our aim was to assess two aspects, incidence of health problems related to travel and the traveler’s awareness of health safety. To this end we phone-interviewed faculty members of a large public University, randomly selected from humanities, engineering and health schools. Out of 520 attempts, we were able to contact 67 (12.9%) and 46 (68.6%) agreed to participate in the study. There was a large male proportion (37/44, 84.1%), mature adults mostly in their forties and fifties (32/44, 72.7%), all of them with higher education, as you would expect of faculty members. Most described themselves as being sedentary or as taking occasional exercise, with only 15.9% (7/44) taking regular exercise. Preexisting diseases were reported by 15 travelers. Most trips lasted usually one week or less. Duration of the travel was related to the destination, with (12h) or longer trips being taken by 68.2% (30/44) of travelers, and the others taking shorter (3h) domestic trips. Most travelling was made by air (41/44) and only 31.8% (14/44) of the trips were motivated by leisure. Field research trips were not reported. Specific health counseling previous to travel was reported only by two (4.5%). Twenty seven of them (61.4%) reported updated immunization, but 11/30 reported unchecked immunizations. 30% (9/30) reported travel without any health insurance coverage. As a whole group, 6 (13.6%) travelers reported at least one health problem attributed to the trip. All of them were males travelling abroad. Five presented respiratory infections, such as influenza and common cold, one neurological, one orthopedic, one social and one hypertension. There were no gender differences regarding age groups, destination, type of transport, previous health counseling, leisure travel motivation or pre-existing diseases. Interestingly, the two cases of previous health counseling were made by domestic travelers. Our data clearly shows that despite a significant number of travel related health problems, these highly educated faculty members, had a low awareness of those risks, and a significant number of travels are made without prior counseling or health insurance. A counseling program conducted by a tourism and health professional must be implemented for faculty members in order to increase the awareness of travel related health problems.
Resumo:
Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.
Resumo:
This research investigated someone of the main problems connected to the application of Tissue Engineering in the prosthetic field, in particular about the characterization of the scaffolding materials and biomimetic strategies adopted in order to promote the implant integration. The spectroscopic and thermal analysis techniques were usefully applied to characterize the chemico-physical properties of the materials such as – crystallinity; – relative composition in case of composite materials; – Structure and conformation of polymeric and peptidic chains; – mechanism and degradation rate; – Intramolecular and intermolecular interactions (hydrogen bonds, aliphatic interactions). This kind of information are of great importance in the comprehension of the interactions that scaffold undergoes when it is in contact with biological tissues; this information are fundamental to predict biodegradation mechanisms and to understand how chemico-physical properties change during the degradation process. In order to fully characterize biomaterials, this findings must be integrated by information relative to mechanical aspects and in vitro and in vivo behavior thanks to collaborations with biomedical engineers and biologists. This study was focussed on three different systems that correspond to three different strategies adopted in Tissue Engineering: biomimetic replica of fibrous 3-D structure of extracellular matrix (PCL-PLLA), incorporation of an apatitic phase similar to bone inorganic phase to promote biomineralization (PCL-HA), surface modification with synthetic oligopeptides that elicit the interaction with osteoblasts. The characterization of the PCL-PLLA composite underlined that the degradation started along PLLA fibres, which are more hydrophylic, and they serve as a guide for tissue regeneration. Moreover it was found that some cellular lines are more active in the colonization of the scaffold. In the PCL-HA composite, the weight ratio between the polymeric and the inorganic phase plays an essential role both in the degradation process and in the biomineralization of the material. The study of self-assembling peptides allowed to clarify the influence of primary structure on intermolecular and intermolecular interactions, that lead to the formation of the secondary structure and it was possible to find a new class of oligopeptides useful to functionalize materials surface. Among the analytical techniques used in this study, Raman vibrational spectroscopy played a major role, being non-destructive and non-invasive, two properties that make it suitable to degradation studies and to morphological characterization. Also micro-IR spectroscopy was useful in the comprehension of peptide structure on oxidized titanium: up to date this study was one of the first to employ this relatively new technique in the biomedical field.
Resumo:
[EN] Sediment materials play an important role on the dynamic response of large structures where fluid-soil-structure interaction is relevant and materials of that kind are present. Dam-reservoir systems and harbor structures are examples of civil engineering constructions where those effects are significant.
Resumo:
[EN]Isogeometric analysis (IGA) has arisen as an attempt to unify the fields of CAD and classical finite element methods. The main idea of IGA consists in using for analysis the same functions (splines) that are used in CAD representation of the geometry. The main advantage with respect to the traditional finite element method is a higher smoothness of the numerical solution and more accurate representation of the geometry. IGA seems to be a promising tool with wide range of applications in engineering. However, this relatively new technique have some open problems that require a solution. In this work we present our results and contributions to this issue…
Resumo:
Broad consensus has been reached within the Education and Cognitive Psychology research communities on the need to center the learning process on experimentation and concrete application of knowledge, rather than on a bare transfer of notions. Several advantages arise from this educational approach, ranging from the reinforce of students learning, to the increased opportunity for a student to gain greater insight into the studied topics, up to the possibility for learners to acquire practical skills and long-lasting proficiency. This is especially true in Engineering education, where integrating conceptual knowledge and practical skills assumes a strategic importance. In this scenario, learners are called to play a primary role. They are actively involved in the construction of their own knowledge, instead of passively receiving it. As a result, traditional, teacher-centered learning environments should be replaced by novel learner-centered solutions. Information and Communication Technologies enable the development of innovative solutions that provide suitable answers to the need for the availability of experimentation supports in educational context. Virtual Laboratories, Adaptive Web-Based Educational Systems and Computer-Supported Collaborative Learning environments can significantly foster different learner-centered instructional strategies, offering the opportunity to enhance personalization, individualization and cooperation. More specifically, they allow students to explore different kinds of materials, to access and compare several information sources, to face real or realistic problems and to work on authentic and multi-facet case studies. In addition, they encourage cooperation among peers and provide support through coached and scaffolded activities aimed at fostering reflection and meta-cognitive reasoning. This dissertation will guide readers within this research field, presenting both the theoretical and applicative results of a research aimed at designing an open, flexible, learner-centered virtual lab for supporting students in learning Information Security.
Resumo:
In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.
Resumo:
Web is constantly evolving, thanks to the 2.0 transition, HTML5 new features and the coming of cloud-computing, the gap between Web and traditional desktop applications is tailing off. Web-apps are more and more widespread and bring several benefits compared to traditional ones. On the other hand reference technologies, JavaScript primarly, are not keeping pace, so a paradim shift is taking place in Web programming, and so many new languages and technologies are coming out. First objective of this thesis is to survey the reference and state-of-art technologies for client-side Web programming focusing in particular on what concerns concurrency and asynchronous programming. Taking into account the problems that affect existing technologies, we finally design simpAL-web, an innovative approach to tackle Web-apps development, based on the Agent-oriented programming abstraction and the simpAL language. == Versione in italiano: Il Web è in continua evoluzione, grazie alla transizione verso il 2.0, alle nuove funzionalità introdotte con HTML5 ed all’avvento del cloud-computing, il divario tra le applicazioni Web e quelle desktop tradizionali va assottigliandosi. Le Web-apps sono sempre più diffuse e presentano diversi vantaggi rispetto a quelle tradizionali. D’altra parte le tecnologie di riferimento, JavaScript in primis, non stanno tenendo il passo, motivo per cui la programmazione Web sta andando incontro ad un cambio di paradigma e nuovi linguaggi e tecnologie stanno spuntando sempre più numerosi. Primo obiettivo di questa tesi è di passare al vaglio le tecnologie di riferimento ed allo stato dell’arte per quel che riguarda la programmmazione Web client-side, porgendo particolare attenzione agli aspetti inerenti la concorrenza e la programmazione asincrona. Considerando i principali problemi di cui soffrono le attuali tecnologie passeremo infine alla progettazione di simpAL-web, un approccio innovativo con cui affrontare lo sviluppo di Web-apps basato sulla programmazione orientata agli Agenti e sul linguaggio simpAL.
Resumo:
This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.
Resumo:
Most of the problems in modern structural design can be described with a set of equation; solutions of these mathematical models can lead the engineer and designer to get info during the design stage. The same holds true for physical-chemistry; this branch of chemistry uses mathematics and physics in order to explain real chemical phenomena. In this work two extremely different chemical processes will be studied; the dynamic of an artificial molecular motor and the generation and propagation of the nervous signals between excitable cells and tissues like neurons and axons. These two processes, in spite of their chemical and physical differences, can be both described successfully by partial differential equations, that are, respectively the Fokker-Planck equation and the Hodgkin and Huxley model. With the aid of an advanced engineering software these two processes have been modeled and simulated in order to extract a lot of physical informations about them and to predict a lot of properties that can be, in future, extremely useful during the design stage of both molecular motors and devices which rely their actions on the nervous communications between active fibres.
Resumo:
An introductory course in probability and statistics for third-year and fourth-year electrical engineering students is described. The course is centered around several computer-based projects that are designed to achieve two objectives. First, the projects illustrate the course topics and provide hands-on experience for the students. The second and equally important objective of the projects is to convey the relevance and usefulness of probability and statistics to practical problems that undergraduate students can appreciate. The benefit of this course as to motivate electrical engineering students to excel in the study of probability concepts, instead of viewing the subject as one more course requirement toward graduation. The authors co-teach the course, and MATLAB is used for mast of the computer-based projects