954 resultados para Engineering, Industrial|Artificial Intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proposal presented in this thesis is to provide designers of knowledge based supervisory systems of dynamic systems with a framework to facilitate their tasks avoiding interface problems among tools, data flow and management. The approach is thought to be useful to both control and process engineers in assisting their tasks. The use of AI technologies to diagnose and perform control loops and, of course, assist process supervisory tasks such as fault detection and diagnose, are in the scope of this work. Special effort has been put in integration of tools for assisting expert supervisory systems design. With this aim the experience of Computer Aided Control Systems Design (CACSD) frameworks have been analysed and used to design a Computer Aided Supervisory Systems (CASSD) framework. In this sense, some basic facilities are required to be available in this proposed framework: ·

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tradicionalment, la reproducció del mon real se'ns ha mostrat a traves d'imatges planes. Aquestes imatges se solien materialitzar mitjançant pintures sobre tela o be amb dibuixos. Avui, per sort, encara podem veure pintures fetes a ma, tot i que la majoria d'imatges s'adquireixen mitjançant càmeres, i es mostren directament a una audiència, com en el cinema, la televisió o exposicions de fotografies, o be son processades per un sistema computeritzat per tal d'obtenir un resultat en particular. Aquests processaments s'apliquen en camps com en el control de qualitat industrial o be en la recerca mes puntera en intel·ligència artificial. Aplicant algorismes de processament de nivell mitja es poden obtenir imatges 3D a partir d'imatges 2D, utilitzant tècniques ben conegudes anomenades Shape From X, on X es el mètode per obtenir la tercera dimensió, i varia en funció de la tècnica que s'utilitza a tal nalitat. Tot i que l'evolució cap a la càmera 3D va començar en els 90, cal que les tècniques per obtenir les formes tridimensionals siguin mes i mes acurades. Les aplicacions dels escàners 3D han augmentat considerablement en els darrers anys, especialment en camps com el lleure, diagnosi/cirurgia assistida, robòtica, etc. Una de les tècniques mes utilitzades per obtenir informació 3D d'una escena, es la triangulació, i mes concretament, la utilització d'escàners laser tridimensionals. Des de la seva aparició formal en publicacions científiques al 1971 [SS71], hi ha hagut contribucions per solucionar problemes inherents com ara la disminució d'oclusions, millora de la precisió, velocitat d'adquisició, descripció de la forma, etc. Tots i cadascun dels mètodes per obtenir punts 3D d'una escena te associat un procés de calibració, i aquest procés juga un paper decisiu en el rendiment d'un dispositiu d'adquisició tridimensional. La nalitat d'aquesta tesi es la d'abordar el problema de l'adquisició de forma 3D, des d'un punt de vista total, reportant un estat de l'art sobre escàners laser basats en triangulació, provant el funcionament i rendiment de diferents sistemes, i fent aportacions per millorar la precisió en la detecció del feix laser, especialment en condicions adverses, i solucionant el problema de la calibració a partir de mètodes geomètrics projectius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La principal contribución de esta Tesis es la propuesta de un modelo de agente BDI graduado (g-BDI) que permita especificar una arquitetura de agente capaz de representar y razonar con actitudes mentales graduadas. Consideramos que una arquitectura BDI más exible permitirá desarrollar agentes que alcancen mejor performance en entornos inciertos y dinámicos, al servicio de otros agentes (humanos o no) que puedan tener un conjunto de motivaciones graduadas. En el modelo g-BDI, las actitudes graduadas del agente tienen una representación explícita y adecuada. Los grados en las creencias representan la medida en que el agente cree que una fórmula es verdadera, en los deseos positivos o negativos permiten al agente establecer respectivamente, diferentes niveles de preferencias o de rechazo. Las graduaciones en las intenciones también dan una medida de preferencia pero en este caso, modelan el costo/beneficio que le trae al agente alcanzar una meta. Luego, a partir de la representación e interacción de estas actitudes graduadas, pueden ser modelados agentes que muestren diferentes tipos de comportamiento. La formalización del modelo g-BDI está basada en los sistemas multi-contextos. Diferentes lógicas modales multivaluadas se han propuesto para representar y razonar sobre las creencias, deseos e intenciones, presentando en cada caso una axiomática completa y consistente. Para tratar con la semántica operacional del modelo de agente, primero se definió un calculus para la ejecución de sistemas multi-contextos, denominado Multi-context calculus. Luego, mediante este calculus se le ha dado al modelo g-BDI semántica computacional. Por otra parte, se ha presentado una metodología para la ingeniería de agentes g-BDI en un escenario multiagente. El objeto de esta propuesta es guiar el diseño de sistemas multiagentes, a partir de un problema del mundo real. Por medio del desarrollo de un sistema recomendador en turismo como caso de estudio, donde el agente recomendador tiene una arquitectura g-BDI, se ha mostrado que este modelo es valioso para diseñar e implementar agentes concretos. Finalmente, usando este caso de estudio se ha realizado una experimentación sobre la flexibilidad y performance del modelo de agente g-BDI, demostrando que es útil para desarrollar agentes que manifiesten conductas diversas. También se ha mostrado que los resultados obtenidos con estos agentes recomendadores modelizados con actitudes graduadas, son mejores que aquellos alcanzados por los agentes con actitudes no-graduadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an introduction to Wireless Sensor Networks (WSN), their applications in the field of control engineering and elsewhere and gives pointers to future research needs. WSN are collections of stand-alone devices which, typically, have one or more sensors (e.g. temperature, light level), some limited processing capability and a wireless interface allowing communication with a base station. As they are usually battery powered, the biggest challenge is to achieve the necessary monitoring whilst using the least amount of power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Password Authentication Protocol (PAP) is widely used in the Wireless Fidelity Point-to-Point Protocol to authenticate an identity and password for a peer. This paper uses a new knowledge-based framework to verify the PAP protocol and a fixed version. Flaws are found in both the original and the fixed versions. A new enhanced protocol is provided and the security of it is proved The whole process is implemented in a mechanical reasoning platform, Isabelle. It only takes a few seconds to find flaws in the original and the fixed protocol and to verify that the enhanced version of the PAP protocol is secure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we provide an initial insight into the study of MI and what it means for a machine to be intelligent. We discuss how MI has progressed to date and consider future scenarios in a realistic and logical way as much as possible. To do this, we unravel one of the major stumbling blocks to the study of MI, which is the field that has become widely known as "artificial intelligence"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article looks at the use of cultured neural networks as the decision-making mechanism of a control system. In this case biological neurons are grown and trained to act as an artificial intelligence engine. Such research has immediate medical implications as well as enormous potential in computing and robotics. An experimental system involving closed-loop control of a mobile robot by a culture of neurons has been successfully created and is described here. This article gives a brief overview of the problem area and ongoing research. Questions are asked as to where this will lead in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deception-detection is the crux of Turing’s experiment to examine machine thinking conveyed through a capacity to respond with sustained and satisfactory answers to unrestricted questions put by a human interrogator. However, in 60 years to the month since the publication of Computing Machinery and Intelligence little agreement exists for a canonical format for Turing’s textual game of imitation, deception and machine intelligence. This research raises from the trapped mine of philosophical claims, counter-claims and rebuttals Turing’s own distinct five minutes question-answer imitation game, which he envisioned practicalised in two different ways: a) A two-participant, interrogator-witness viva voce, b) A three-participant, comparison of a machine with a human both questioned simultaneously by a human interrogator. Using Loebner’s 18th Prize for Artificial Intelligence contest, and Colby et al.’s 1972 transcript analysis paradigm, this research practicalised Turing’s imitation game with over 400 human participants and 13 machines across three original experiments. Results show that, at the current state of technology, a deception rate of 8.33% was achieved by machines in 60 human-machine simultaneous comparison tests. Results also show more than 1 in 3 Reviewers succumbed to hidden interlocutor misidentification after reading transcripts from experiment 2. Deception-detection is essential to uncover the increasing number of malfeasant programmes, such as CyberLover, developed to steal identity and financially defraud users in chatrooms across the Internet. Practicalising Turing’s two tests can assist in understanding natural dialogue and mitigate the risk from cybercrime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planning is one of the key problems for autonomous vehicles operating in road scenarios. Present planning algorithms operate with the assumption that traffic is organised in predefined speed lanes, which makes it impossible to allow autonomous vehicles in countries with unorganised traffic. Unorganised traffic is though capable of higher traffic bandwidths when constituting vehicles vary in their speed capabilities and sizes. Diverse vehicles in an unorganised exhibit unique driving behaviours which are analysed in this paper by a simulation study. The aim of the work reported here is to create a planning algorithm for mixed traffic consisting of both autonomous and non-autonomous vehicles without any inter-vehicle communication. The awareness (e.g. vision) of every vehicle is restricted to nearby vehicles only and a straight infinite road is assumed for decision making regarding navigation in the presence of multiple vehicles. Exhibited behaviours include obstacle avoidance, overtaking, giving way for vehicles to overtake from behind, vehicle following, adjusting the lateral lane position and so on. A conflict of plans is a major issue which will almost certainly arise in the absence of inter-vehicle communication. Hence each vehicle needs to continuously track other vehicles and rectify plans whenever a collision seems likely. Further it is observed here that driver aggression plays a vital role in overall traffic dynamics, hence this has also been factored in accordingly. This work is hence a step forward towards achieving autonomous vehicles in unorganised traffic, while similar effort would be required for planning problems such as intersections, mergers, diversions and other modules like localisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most challenging tasks in financial management for large governmental and industrial organizations is Planning and Budgeting (P&B). The processes involved with P&B are cost and time intensive, especially when dealing with uncertainties and budget adjustments during the planning horizon. This work builds on our previous research in which we proposed and evaluated a fuzzy approach that allows optimizing the budget interactively beyond the initial planning stage. In this research we propose an extension that handles financial stress (i.e. drastic budget cuts) occurred during the budget period. This is done by introducing fuzzy stress parameters which are used to re-distribute the budget in order to minimize the negative impact of the financial stress. The benefits and possible issues of this approach are analyzed critically using a real world case study from the Nuremberg Institute of Technology (NIT). Additionally, ongoing and future research directions are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictive performance evaluation is a fundamental issue in design, development, and deployment of classification systems. As predictive performance evaluation is a multidimensional problem, single scalar summaries such as error rate, although quite convenient due to its simplicity, can seldom evaluate all the aspects that a complete and reliable evaluation must consider. Due to this, various graphical performance evaluation methods are increasingly drawing the attention of machine learning, data mining, and pattern recognition communities. The main advantage of these types of methods resides in their ability to depict the trade-offs between evaluation aspects in a multidimensional space rather than reducing these aspects to an arbitrarily chosen (and often biased) single scalar measure. Furthermore, to appropriately select a suitable graphical method for a given task, it is crucial to identify its strengths and weaknesses. This paper surveys various graphical methods often used for predictive performance evaluation. By presenting these methods in the same framework, we hope this paper may shed some light on deciding which methods are more suitable to use in different situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques devoted to generating triangular meshes from intensity images either take as input a segmented image or generate a mesh without distinguishing individual structures contained in the image. These facts may cause difficulties in using such techniques in some applications, such as numerical simulations. In this work we reformulate a previously developed technique for mesh generation from intensity images called Imesh. This reformulation makes Imesh more versatile due to an unified framework that allows an easy change of refinement metric, rendering it effective for constructing meshes for applications with varied requirements, such as numerical simulation and image modeling. Furthermore, a deeper study about the point insertion problem and the development of geometrical criterion for segmentation is also reported in this paper. Meshes with theoretical guarantee of quality can also be obtained for each individual image structure as a post-processing step, a characteristic not usually found in other methods. The tests demonstrate the flexibility and the effectiveness of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.