921 resultados para Energy-based model
Resumo:
Methods like Event History Analysis can show the existence of diffusion and part of its nature, but do not study the process itself. Nowadays, thanks to the increasing performance of computers, processes can be studied using computational modeling. This thesis presents an agent-based model of policy diffusion mainly inspired from the model developed by Braun and Gilardi (2006). I first start by developing a theoretical framework of policy diffusion that presents the main internal drivers of policy diffusion - such as the preference for the policy, the effectiveness of the policy, the institutional constraints, and the ideology - and its main mechanisms, namely learning, competition, emulation, and coercion. Therefore diffusion, expressed by these interdependencies, is a complex process that needs to be studied with computational agent-based modeling. In a second step, computational agent-based modeling is defined along with its most significant concepts: complexity and emergence. Using computational agent-based modeling implies the development of an algorithm and its programming. When this latter has been developed, we let the different agents interact. Consequently, a phenomenon of diffusion, derived from learning, emerges, meaning that the choice made by an agent is conditional to that made by its neighbors. As a result, learning follows an inverted S-curve, which leads to partial convergence - global divergence and local convergence - that triggers the emergence of political clusters; i.e. the creation of regions with the same policy. Furthermore, the average effectiveness in this computational world tends to follow a J-shaped curve, meaning that not only time is needed for a policy to deploy its effects, but that it also takes time for a country to find the best-suited policy. To conclude, diffusion is an emergent phenomenon from complex interactions and its outcomes as ensued from my model are in line with the theoretical expectations and the empirical evidence.Les méthodes d'analyse de biographie (event history analysis) permettent de mettre en évidence l'existence de phénomènes de diffusion et de les décrire, mais ne permettent pas d'en étudier le processus. Les simulations informatiques, grâce aux performances croissantes des ordinateurs, rendent possible l'étude des processus en tant que tels. Cette thèse, basée sur le modèle théorique développé par Braun et Gilardi (2006), présente une simulation centrée sur les agents des phénomènes de diffusion des politiques. Le point de départ de ce travail met en lumière, au niveau théorique, les principaux facteurs de changement internes à un pays : la préférence pour une politique donnée, l'efficacité de cette dernière, les contraintes institutionnelles, l'idéologie, et les principaux mécanismes de diffusion que sont l'apprentissage, la compétition, l'émulation et la coercition. La diffusion, définie par l'interdépendance des différents acteurs, est un système complexe dont l'étude est rendue possible par les simulations centrées sur les agents. Au niveau méthodologique, nous présenterons également les principaux concepts sous-jacents aux simulations, notamment la complexité et l'émergence. De plus, l'utilisation de simulations informatiques implique le développement d'un algorithme et sa programmation. Cette dernière réalisée, les agents peuvent interagir, avec comme résultat l'émergence d'un phénomène de diffusion, dérivé de l'apprentissage, où le choix d'un agent dépend en grande partie de ceux faits par ses voisins. De plus, ce phénomène suit une courbe en S caractéristique, poussant à la création de régions politiquement identiques, mais divergentes au niveau globale. Enfin, l'efficacité moyenne, dans ce monde simulé, suit une courbe en J, ce qui signifie qu'il faut du temps, non seulement pour que la politique montre ses effets, mais également pour qu'un pays introduise la politique la plus efficace. En conclusion, la diffusion est un phénomène émergent résultant d'interactions complexes dont les résultats du processus tel que développé dans ce modèle correspondent tant aux attentes théoriques qu'aux résultats pratiques.
Resumo:
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.
Resumo:
BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Resumo:
We construct a utility-based model of fluctuations, with nominal rigidities andunemployment, and draw its implications for the unemployment-inflation trade-off and for the conduct of monetary policy.We proceed in two steps. We first leave nominal rigidities aside. We show that,under a standard utility specification, productivity shocks have no effect onunemployment in the constrained efficient allocation. We then focus on theimplications of alternative real wage setting mechanisms for fluctuations in un-employment. We show the role of labor market frictions and real wage rigiditiesin determining the effects of productivity shocks on unemployment.We then introduce nominal rigidities in the form of staggered price setting byfirms. We derive the relation between inflation and unemployment and discusshow it is influenced by the presence of labor market frictions and real wagerigidities. We show the nature of the tradeoff between inflation and unemployment stabilization, and its dependence on labor market characteristics. We draw the implications for optimal monetary policy.
Resumo:
This paper presents and estimates a dynamic choice model in the attribute space considering rational consumers. In light of the evidence of several state-dependence patterns, the standard attribute-based model is extended by considering a general utility function where pure inertia and pure variety-seeking behaviors can be explained in the model as particular linear cases. The dynamics of the model are fully characterized by standard dynamic programming techniques. The model presents a stationary consumption pattern that can be inertial, where the consumer only buys one product, or a variety-seeking one, where the consumer shifts among varied products.We run some simulations to analyze the consumption paths out of the steady state. Underthe hybrid utility assumption, the consumer behaves inertially among the unfamiliar brandsfor several periods, eventually switching to a variety-seeking behavior when the stationary levels are approached. An empirical analysis is run using scanner databases for three different product categories: fabric softener, saltine cracker, and catsup. Non-linear specifications provide the best fit of the data, as hybrid functional forms are found in all the product categories for most attributes and segments. These results reveal the statistical superiority of the non-linear structure and confirm the gradual trend to seek variety as the level of familiarity with the purchased items increases.
Resumo:
The Soil Nitrogen Availability Predictor (SNAP) model predicts daily and annual rates of net N mineralization (NNM) based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate). The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer) for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March). Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84). In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
We present an agent-based model with the aim of studying how macro-level dynamics of spatial distances among interacting individuals in a closed space emerge from micro-level dyadic and local interactions. Our agents moved on a lattice (referred to as a room) using a model implemented in a computer program called P-Space in order to minimize their dissatisfaction, defined as a function of the discrepancy between the real distance and the ideal, or desired, distance between agents. Ideal distances evolved in accordance with the agent's personal and social space, which changed throughout the dynamics of the interactions among the agents. In the first set of simulations we studied the effects of the parameters of the function that generated ideal distances, and in a second set we explored how group macrolevel behavior depended on model parameters and other variables. We learned that certain parameter values yielded consistent patterns in the agents' personal and social spaces, which in turn led to avoidance and approaching behaviors in the agents. We also found that the spatial behavior of the group of agents as a whole was influenced by the values of the model parameters, as well as by other variables such as the number of agents. Our work demonstrates that the bottom-up approach is a useful way of explaining macro-level spatial behavior. The proposed model is also shown to be a powerful tool for simulating the spatial behavior of groups of interacting individuals.
Resumo:
Les problèmes d'écoulements multiphasiques en média poreux sont d'un grand intérêt pour de nombreuses applications scientifiques et techniques ; comme la séquestration de C02, l'extraction de pétrole et la dépollution des aquifères. La complexité intrinsèque des systèmes multiphasiques et l'hétérogénéité des formations géologiques sur des échelles multiples représentent un challenge majeur pour comprendre et modéliser les déplacements immiscibles dans les milieux poreux. Les descriptions à l'échelle supérieure basées sur la généralisation de l'équation de Darcy sont largement utilisées, mais ces méthodes sont sujettes à limitations pour les écoulements présentant de l'hystérèse. Les avancées récentes en terme de performances computationnelles et le développement de méthodes précises pour caractériser l'espace interstitiel ainsi que la distribution des phases ont favorisé l'utilisation de modèles qui permettent une résolution fine à l'échelle du pore. Ces modèles offrent un aperçu des caractéristiques de l'écoulement qui ne peuvent pas être facilement observées en laboratoire et peuvent être utilisé pour expliquer la différence entre les processus physiques et les modèles à l'échelle macroscopique existants. L'objet premier de la thèse se porte sur la simulation numérique directe : les équations de Navier-Stokes sont résolues dans l'espace interstitiel et la méthode du volume de fluide (VOF) est employée pour suivre l'évolution de l'interface. Dans VOF, la distribution des phases est décrite par une fonction fluide pour l'ensemble du domaine et des conditions aux bords particulières permettent la prise en compte des propriétés de mouillage du milieu poreux. Dans la première partie de la thèse, nous simulons le drainage dans une cellule Hele-Shaw 2D avec des obstacles cylindriques. Nous montrons que l'approche proposée est applicable même pour des ratios de densité et de viscosité très importants et permet de modéliser la transition entre déplacement stable et digitation visqueuse. Nous intéressons ensuite à l'interprétation de la pression capillaire à l'échelle macroscopique. Nous montrons que les techniques basées sur la moyenne spatiale de la pression présentent plusieurs limitations et sont imprécises en présence d'effets visqueux et de piégeage. Au contraire, une définition basée sur l'énergie permet de séparer les contributions capillaires des effets visqueux. La seconde partie de la thèse est consacrée à l'investigation des effets d'inertie associés aux reconfigurations irréversibles du ménisque causé par l'interface des instabilités. Comme prototype pour ces phénomènes, nous étudions d'abord la dynamique d'un ménisque dans un pore angulaire. Nous montrons que, dans un réseau de pores cubiques, les sauts et reconfigurations sont si fréquents que les effets d'inertie mènent à différentes configurations des fluides. A cause de la non-linéarité du problème, la distribution des fluides influence le travail des forces de pression, qui, à son tour, provoque une chute de pression dans la loi de Darcy. Cela suggère que ces phénomènes devraient être pris en compte lorsque que l'on décrit l'écoulement multiphasique en média poreux à l'échelle macroscopique. La dernière partie de la thèse s'attache à démontrer la validité de notre approche par une comparaison avec des expériences en laboratoire : un drainage instable dans un milieu poreux quasi 2D (une cellule Hele-Shaw avec des obstacles cylindriques). Plusieurs simulations sont tournées sous différentes conditions aux bords et en utilisant différents modèles (modèle intégré 2D et modèle 3D) afin de comparer certaines quantités macroscopiques avec les observations au laboratoire correspondantes. Malgré le challenge de modéliser des déplacements instables, où, par définition, de petites perturbations peuvent grandir sans fin, notre approche numérique apporte de résultats satisfaisants pour tous les cas étudiés. - Problems involving multiphase flow in porous media are of great interest in many scientific and engineering applications including Carbon Capture and Storage, oil recovery and groundwater remediation. The intrinsic complexity of multiphase systems and the multi scale heterogeneity of geological formations represent the major challenges to understand and model immiscible displacement in porous media. Upscaled descriptions based on generalization of Darcy's law are widely used, but they are subject to several limitations for flow that exhibit hysteric and history- dependent behaviors. Recent advances in high performance computing and the development of accurate methods to characterize pore space and phase distribution have fostered the use of models that allow sub-pore resolution. These models provide an insight on flow characteristics that cannot be easily achieved by laboratory experiments and can be used to explain the gap between physical processes and existing macro-scale models. We focus on direct numerical simulations: we solve the Navier-Stokes equations for mass and momentum conservation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. In the VOF the distribution of the phases is described by a fluid function (whole-domain formulation) and special boundary conditions account for the wetting properties of the porous medium. In the first part of this thesis we simulate drainage in a 2-D Hele-Shaw cell filled with cylindrical obstacles. We show that the proposed approach can handle very large density and viscosity ratios and it is able to model the transition from stable displacement to viscous fingering. We then focus on the interpretation of the macroscopic capillary pressure showing that pressure average techniques are subject to several limitations and they are not accurate in presence of viscous effects and trapping. On the contrary an energy-based definition allows separating viscous and capillary contributions. In the second part of the thesis we investigate inertia effects associated with abrupt and irreversible reconfigurations of the menisci caused by interface instabilities. As a prototype of these phenomena we first consider the dynamics of a meniscus in an angular pore. We show that in a network of cubic pores, jumps and reconfigurations are so frequent that inertia effects lead to different fluid configurations. Due to the non-linearity of the problem, the distribution of the fluids influences the work done by pressure forces, which is in turn related to the pressure drop in Darcy's law. This suggests that these phenomena should be taken into account when upscaling multiphase flow in porous media. The last part of the thesis is devoted to proving the accuracy of the numerical approach by validation with experiments of unstable primary drainage in a quasi-2D porous medium (i.e., Hele-Shaw cell filled with cylindrical obstacles). We perform simulations under different boundary conditions and using different models (2-D integrated and full 3-D) and we compare several macroscopic quantities with the corresponding experiment. Despite the intrinsic challenges of modeling unstable displacement, where by definition small perturbations can grow without bounds, the numerical method gives satisfactory results for all the cases studied.
Resumo:
With over 68 thousand miles of gravel roads in Iowa and the importance of these roads within the farm-to-market transportation system, proper water management becomes critical for maintaining the integrity of the roadway materials. However, the build-up of water within the aggregate subbase can lead to frost boils and ultimately potholes forming at the road surface. The aggregate subbase and subgrade soils under these gravel roads are produced with material opportunistically chosen from local sources near the site and, many times, the compositions of these sublayers are far from ideal in terms of proper water drainage with the full effects of this shortcut not being fully understood. The primary objective of this project was to provide a physically-based model for evaluating the drainability of potential subbase and subgrade materials for gravel roads in Iowa. The Richards equation provided the appropriate framework to study the transient unsaturated flow that usually occurs through the subbase and subgrade of a gravel road. From which, we identified that the saturated hydraulic conductivity, Ks, was a key parameter driving the time to drain of subgrade soils found in Iowa, thus being a good proxy variable for accessing roadway drainability. Using Ks, derived from soil texture, we were able to identify potential problem areas in terms of roadway drainage . It was found that there is a threshold for Ks of 15 cm/day that determines if the roadway will drain efficiently, based on the requirement that the time to drain, Td, the surface roadway layer does not exceed a 2-hr limit. Two of the three highest abundant textures (loam and silty clay loam), which cover nearly 60% of the state of Iowa, were found to have average Td values greater than the 2-hr limit. With such a large percentage of the state at risk for the formation of boils due to the soil with relatively low saturated hydraulic conductivity values, it seems pertinent that we propose alternative design and/or maintenance practices to limit the expensive repair work in Iowa. The addition of drain tiles or French mattresses my help address drainage problems. However, before pursuing this recommendation, a comprehensive cost-benefit analysis is needed.
Resumo:
Tämän tutkimuksen tarkoituksena on selvittää kaukolämmityksen rinnalla käytettävän toisen lämmitysmuodon, tässä tapauksessa sähkölämmityksen, vaikutusta sähkön- ja lämmöntuotantoon. Tämä tutkimus liittyy ¿Kehittyvä kaukolämpö -hankkeen pilottiosaan. Hankkeen pilottiosassa tutkitaan hybridilämmityksen kannattavuutta ja vaikutuksia sekä kuluttajan että yhdyskunnan kannalta. Tämätutkimus jatkaa jo aikaisemmin tehtyä tutkimusta 'Hybridilämmityksen kustannusvaikutukset', jossa tutkittiin kaukolämmityksen taloudellisuutta kuluttajan kannalta elinkaarianalyysin avulla. Tämän tutkimuksen tarkoituksena on määrittää hybridilämmityksen niin taloudelliset kuin ympäristölliset vaikutukset yhdyskunnan kannalta. Yhdyskunnan osalta vaikutuksia tarkasteltiin referenssikaupungin avulla. Referenssikaupungin alkuarvot perustuvat jo aiemmin tähän pilottiosaan tehtyyn tutkimukseen 'Hybridilämmityksen kustannusvaikutukset'. Näitä arvoja hyväksi käyttäen referenssikaupungille perustettiin kaksi energian tuotantorakennemallia ja molemmille malleille kaksi eri skenaariota hybridilämmityksen kasvamisesta. Skenaarioissa otettiin huomioon myös päästökaupan vaikutukset. Molemmat skenaariot osoittivat päästökaupan vaikutukset mukaan luettuna, ettei sähkölämmityksen käyttäminen kaukolämmityksen ohella tuo ainoastaan yhdyskunnalle lisää tuotantokustannuksia, vaan se lisää myös päästöjä. Tulevaisuuden epävarmuutta analysoitiin herkkyysanalyysin avulla. Tutkimusta varten laadittiin tuontienergian ja kotimaisten polttoaineiden hinnoille kaksi skenaariota, joilla laskettiin vuositason tuotantokustannukset. Jokainen skenaario toi huomattavan lisän niin tuotantokustannuksiin kuin päästöihin. Eri skenaarioilla oli vaikutus kaukolämmön pysyvyyskäyrän muotoon ja näin myös voimalaitoksien käyttötunteihin. Laitoksien huipun käyttötunnit pienenevät ja tuotantokustannukset tuotettua energiayksikköä kohden kasvavat. Tapauksessa, jossa on edullista käyttää peruskuormalaitoksia mahdollisimman paljonvuoden aikana, hybridilämmityksen käyttäminen siirsi tilannetta päinvastaiseen suuntaan. Tämä suunta tarkoittaa sitä, että halpaa peruskuormatuotantoapitää korvata kalliimmalla ja enemmän päästöjä aiheuttavalla erillistuotannolla. Tämän tutkimuksen tulokset osoittavat, että mikäli sähkölämmityksen yleistyminen kaukolämmityksen rinnalla lisääntyy, aiheuttaa se yhdyskunnalle huomattavia lisäkustannuksia ja päästöjä. Yksi sähkölämmityksen käyttöä lisäävä tekijä on kuluttajien mielikuva. Kuluttajien mielikuva sähkölämmityksestä on, että se on asennuskustannuksiltaan edullinen ja helppo asentaa. Todellisuudessa sähkölämmityksen käyttäminen tuo odottamattomia lisäkustannuksia kuluttajille energiantuotantolaitoksien omien lisääntyvien tuotantokustannusten kautta. Nämä kustannukset voivat realisoitua esimerkiksi kohonneiden sähkön ja kaukolämmön energiamaksujen tai sähkön siirtomaksujen muodossa. Ainoastaan kuluttajien mielikuvien muuttamisella voidaan päästä yhdyskunnan kannalta taloudellisempaan ja ympäristöystävällisempään energiantuotantomalliin.
Resumo:
PURPOSE: Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. METHODS: The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. RESULTS: The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. CONCLUSION: The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.
Resumo:
We have studied how leaders emerge in a group as a consequence of interactions among its members. We propose that leaders can emerge as a consequence of a self-organized process based on local rules of dyadic interactions among individuals. Flocks are an example of self-organized behaviour in a group and properties similar to those observed in flocks might also explain some of the dynamics and organization of human groups. We developed an agent-based model that generated flocks in a virtual world and implemented it in a multi-agent simulation computer program that computed indices at each time step of the simulation to quantify the degree to which a group moved in a coordinated way (index of flocking behaviour) and the degree to which specific individuals led the group (index of hierarchical leadership). We ran several series of simulations in order to test our model and determine how these indices behaved under specific agent and world conditions. We identified the agent, world property, and model parameters that made stable, compact flocks emerge, and explored possible environmental properties that predicted the probability of becoming a leader.
Resumo:
Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.
Resumo:
This study examines the structure of the Russian Reflexive Marker ( ся/-сь) and offers a usage-based model building on Construction Grammar and a probabilistic view of linguistic structure. Traditionally, reflexive verbs are accounted for relative to non-reflexive verbs. These accounts assume that linguistic structures emerge as pairs. Furthermore, these accounts assume directionality where the semantics and structure of a reflexive verb can be derived from the non-reflexive verb. However, this directionality does not necessarily hold diachronically. Additionally, the semantics and the patterns associated with a particular reflexive verb are not always shared with the non-reflexive verb. Thus, a model is proposed that can accommodate the traditional pairs as well as for the possible deviations without postulating different systems. A random sample of 2000 instances marked with the Reflexive Marker was extracted from the Russian National Corpus and the sample used in this study contains 819 unique reflexive verbs. This study moves away from the traditional pair account and introduces the concept of Neighbor Verb. A neighbor verb exists for a reflexive verb if they share the same phonological form excluding the Reflexive Marker. It is claimed here that the Reflexive Marker constitutes a system in Russian and the relation between the reflexive and neighbor verbs constitutes a cross-paradigmatic relation. Furthermore, the relation between the reflexive and the neighbor verb is argued to be of symbolic connectivity rather than directionality. Effectively, the relation holding between particular instantiations can vary. The theoretical basis of the present study builds on this assumption. Several new variables are examined in order to systematically model variability of this symbolic connectivity, specifically the degree and strength of connectivity between items. In usage-based models, the lexicon does not constitute an unstructured list of items. Instead, items are assumed to be interconnected in a network. This interconnectedness is defined as Neighborhood in this study. Additionally, each verb carves its own niche within the Neighborhood and this interconnectedness is modeled through rhyme verbs constituting the degree of connectivity of a particular verb in the lexicon. The second component of the degree of connectivity concerns the status of a particular verb relative to its rhyme verbs. The connectivity within the neighborhood of a particular verb varies and this variability is quantified by using the Levenshtein distance. The second property of the lexical network is the strength of connectivity between items. Frequency of use has been one of the primary variables in functional linguistics used to probe this. In addition, a new variable called Constructional Entropy is introduced in this study building on information theory. It is a quantification of the amount of information carried by a particular reflexive verb in one or more argument constructions. The results of the lexical connectivity indicate that the reflexive verbs have statistically greater neighborhood distances than the neighbor verbs. This distributional property can be used to motivate the traditional observation that the reflexive verbs tend to have idiosyncratic properties. A set of argument constructions, generalizations over usage patterns, are proposed for the reflexive verbs in this study. In addition to the variables associated with the lexical connectivity, a number of variables proposed in the literature are explored and used as predictors in the model. The second part of this study introduces the use of a machine learning algorithm called Random Forests. The performance of the model indicates that it is capable, up to a degree, of disambiguating the proposed argument construction types of the Russian Reflexive Marker. Additionally, a global ranking of the predictors used in the model is offered. Finally, most construction grammars assume that argument construction form a network structure. A new method is proposed that establishes generalization over the argument constructions referred to as Linking Construction. In sum, this study explores the structural properties of the Russian Reflexive Marker and a new model is set forth that can accommodate both the traditional pairs and potential deviations from it in a principled manner.