963 resultados para Energy transition
Resumo:
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M-2(L)(2) (mu-OCH3)(2) [M = Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC. Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
251 p.
Resumo:
Three kinds of Er3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Omega(t) (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er3+ I-4(13/2) -> I-4(15/2) transition are calculated for the glass samples with different phonon energy and OH- group contents. Finally, the effect of OH- groups on fluorescence decay rate of Er3+ is analysed, the constant KOH-Er Of TWN, TZPL and TZL glasses are calculated to be 9.2 x 10(-19) cm(4)s(-1), 5.9 x 10(-19) cm(4)s(-1), and 3.5 x 10(-19) cm(4)s(-1), respectively.
Resumo:
In this work we show the results obtained applying a Unified Dark Matter (UDM) model with a fast transition to a set of cosmological data. Two different functions to model the transition are tested, and the feasibility of both models is explored using CMB shift data from Planck [1], Galaxy Clustering data from [2] and [3], and Union2.1 SNe Ia [4]. These new models are also statistically compared with the ACDM and quiessence models using Bayes factor through evidence. Bayesian inference does not discard the UDM models in favor of ACDM.
Resumo:
In this paper we examine triggering in a simple linearly-stable thermoacoustic system using techniques from flow instability and optimal control. Firstly, for a noiseless system, we find the initial states that have highest energy growth over given times and from given energies. Secondly, by varying the initial energy, we find the lowest energy that just triggers to a stable periodic solution. We show that the corresponding initial state grows first towards an unstable periodic solution and, from there, to the stable periodic solution. This exploits linear transient growth, which arises due to nonnormality in the governing equations and is directly analogous to bypass transition to turbulence. Thirdly, we introduce noise that has similar spectral characteristics to this initial state. We show that, when triggering from low noise levels, the system grows to high amplitude self-sustained oscillations by first growing towards the unstable periodic solution of the noiseless system. This helps to explain the experimental observation that linearly-stable systems can trigger to self-sustained oscillations even with low background noise. © 2010 by University of Cambridge. Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.
Resumo:
Papermaking is considered as an energy-intensive industry partly due to the fact that the machinery and procedures have been designed at the time when energy was both cheap and plentiful. A typical paper machine manufactures a variety of different products (grades) which impose variable per-unit raw material and energy costs to the mill. It is known that during a grade change operation the products are not market-worthy. Therefore, two different production regimes, i.e. steady state and grade transition can be recognised in papermaking practice. Among the costs associated with paper manufacture, the energy cost is 'more variable' due to (usually) day-to-day variations of the energy prices. Moreover, the production of a grade is often constrained by customer delivery time requirements. Given the above constraints and production modes, the product scheduling technique proposed in this paper aims at optimising the sequence of orders in a single machine so that the cost of production (mainly determined by the energy) is minimised. Simulation results obtained from a commercial board machine in the UK confirm the effectiveness of the proposed method. © 2011 IFAC.
Resumo:
We study two distinctly ordered condensed phases of polypeptide molecules, amyloid fibrils and amyloidlike microcrystals, and the first-order twisting phase transition between these two states. We derive a single free-energy form which connects both phases. Our model identifies relevant degrees of freedom for describing the collective behavior of supramolecular polypeptide structures, reproduces accurately the results from molecular dynamics simulations as well as from experiments, and sheds light on the uniform nature of the dimensions of different peptide fibrils. © 2012 American Physical Society.
Resumo:
We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.
Resumo:
A high temperature superconducting magnetic energy storage device (SMES) has been realised using a 350 m-long BSCCO tape wound as a pancake coil. The coil is mounted on a cryocooler allowing temperatures down to 17.2 K to be achieved. The temperature dependence of coil electrical resistance R(T) shows a superconducting transition at T 102.5 K. Measurements of the V(I) characteristics were performed at several temperatures between 17.2 K and 101.5 K to obtain the temperature dependence of the critical current (using a 1 νV/cm criterion). Critical currents were found to exceed 100 A for T < 30 K. An electronic DC-DC converter was built in order to control the energy flow in and out of the superconducting coil. The converter consists of a MOS transistor bridge switching at a 80 kHz frequency and controlled with standard Pulse Width Modulation (PWM) techniques. The system was tested using a 30 V squared wave power supply as bridge input voltage. The coil current, the bridge input and output voltages were recorded simultaneously. Using a 10 A setpoint current in the superconducting coil, the whole system (coil + DC-DC converter) can provide a stable output voltage showing uninterruptible power supply (UPS) capabilities over 1 s. © 2006 IOP Publishing Ltd.
Resumo:
Phyrobilisomes (PBS) are the major light-harvesting, protein-pigment complexes in cyanobacteria and red algae. PBS absorb and transfer light energy to photosystem (PS) II as well as PS I, and the distribution of light energy from PBS to the two photosystems is regulated by light conditions through a mechanism known as state transitions. In this study the quantum efficiency of excitation energy transfer from PBS to PS I in the cyanobacterium Synechococcus sp. PCC 7002 was determined, and the results showed that energy transfer from PBS to PS I is extremely efficient. The results further demonstrated that energy transfer from PBS to PS I occurred directly and that efficient energy transfer was dependent upon the allophycocyanin-B alpha subunit, ApcD. In the absence of ApcD, cells were unable to perform state transitions and were trapped in state 1. Action spectra showed that light energy transfer from PBS to PS I was severely impaired in the absence of ApcD. An apcD mutant grew more slowly than the wild type in light preferentially absorbed by phyrobiliproteins and was more sensitive to high light intensity. On the other hand, a mutant lacking ApcF, which is required for efficient energy transfer from PBS to PS II, showed greater resistance to high light treatment. Therefore, state transitions in cyanobacteria have two roles: (1) they regulate light energy distribution between the two photosystems; and (2) they help to protect cells from the effects of light energy excess at high light intensities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020-2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
This paper covers wear and energy dissipation of solid epoxy induced by the alternative rubbing between two samples of identical thermosetting polymer. Varying normal load, sliding velocity and sliding distance, the authors were able to define and discuss wear and friction laws and associated energy dissipation. Moreover, traces of several wear mechanisms were distinguished on the worn surfaces and associated with applied conditions. Observed under higher velocity, polymer softening and local state transition were explained by surface temperature estimate and confirmed by infra-red spectroscopy measurements. To conclude this study, all observed phenomena are classified into two wear scenarios according to sliding velocity. © 2014 Elsevier Ltd.
Resumo:
Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]
Resumo:
By using ab initio electronic structure calculations within density functional theory, we study the structural, electronic, and magnetic properties of Si doped with a transition metal impurity. We consider the transition metals of the 3d series V, Cr, Mn, Fe, Co, and Ni. To get insight into the level filling mechanism and the magnetization saturation, we first investigate the transition metal-Si alloys in the zinc-blende structure. Next, we investigate the doping of bulk Si with a transition metal atom, in which it occupies the substitutional site, the interstitial site with tetrahedral symmetry, and the interstitial site with hexagonal symmetry. It is found that all of these transition metal impurities prefer an interstitial position in Si. Furthermore, we show that it is possible to interpret the electronic and magnetic properties by using a simple level filling picture and a comparison is made to Ge doped with the same transition metal atoms. In order to get insight into the effect of a strained environment, we calculate the formation energy as a function of an applied homogeneous pressure and we show that an applied pressure can stabilize the substitutional position of transition metal impurities in Si. Finally, the energies of the ferromagnetic states are compared to those of the antiferromagnetic states. It is shown that the interstitial site of the Mn dopant helps us to stabilize the nearest neighbor substitutional site to realize the ferromagnetic state. For doping of Si with Cr, a ferrimagnetic behavior is predicted.