860 resultados para Energy consumption in buildings


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building energy consumption(BEC) accounting and assessment is fundamental work for building energy efficiency(BEE) development. In existing Chinese statistical yearbook, there is no specific item for BEC accounting and relevant data are separated and mixed with other industry consumption. Approximate BEC data can be acquired from existing energy statistical yearbook. For BEC assessment, caloric values of different energy carriers are adopted in energy accounting and assessment field. This methodology obtained much useful conclusion for energy efficiency development. While the traditional methodology concerns only on the energy quantity, energy classification issue is omitted. Exergy methodology is put forward to assess BEC. With the new methodology, energy quantity and quality issues are both concerned in BEC assessment. To illustrate the BEC accounting and exergy assessment, a case of Chongqing in 2004 is shown. Based on the exergy analysis, BEC of Chongqing in 2004 accounts for 17.3% of the total energy consumption. This result is quite common to that of traditional methodology. As far as energy supply efficiency is concerned, the difference is highlighted by 0.417 of the exergy methodology to 0.645 of the traditional methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global temperatures are expected to rise by between 1.1 and 6.4oC this century, depending, to a large extent, on the amount of carbon we emit to the atmosphere from now onwards. This warming is expected to have very negative effects on many peoples and ecosystems and, therefore, minimising our carbon emissions is a priority. Buildings are estimated to be responsible for around 50% of carbon emissions in the UK. Potential reductions involve both operational emissions, produced during use, and embodied emissions, produced during manufacture of materials and components, and during construction, refurbishments and demolition. To date the major effort has focused on reducing the, apparently, larger operational element, which is more readily quantifiable and reduction measures are relatively straightforward to identify and implement. Various studies have compared the magnitude of embodied and operational emissions, but have shown considerable variation in the relative values. This illustrates the difficulties in quantifying embodied, as it requires a detailed knowledge of the processes involved in the different life cycle phases, and requires the use of consistent system boundaries. However, other studies have established the interaction between operational and embodied, which demonstrates the importance of considering both elements together in order to maximise potential reductions. This is borne out in statements from both the Intergovernmental Panel on Climate Change and The Low Carbon Construction Innovation and Growth Team of the UK Government. In terms of meeting the 2020 and 2050 timeframes for carbon reductions it appears to be equally, if not more, important to consider early embodied carbon reductions, rather than just future operational reductions. Future decarbonisation of energy supply and more efficient lighting and M&E equipment installed in future refits is likely to significantly reduce operational emissions, lending further weight to this argument. A method of discounting to evaluate the present value of future carbon emissions would allow more realistic comparisons to be made on the relative importance of the embodied and operational elements. This paper describes the results of case studies on carbon emissions over the whole lifecycle of three buildings in the UK, compares four available software packages for determining embodied carbon and suggests a method of carbon discounting to obtain present values for future emissions. These form the initial stages of a research project aimed at producing information on embodied carbon for different types of building, components and forms of construction, in a simplified form, which can be readily used by building designers in optimising building design in terms of minimising overall carbon emissions. Keywords: Embodied carbon; carbon emission; building; operational carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition to a low-carbon economy urgently demands better information on the drivers of energy consumption. UK government policy has prioritized energy efficiency in the built stock as a means of carbon reduction, but the sector is historically information poor, particularly the non-domestic building stock. This paper presents the results of a pilot study that investigated whether and how property and energy consumption data might be combined for non-domestic energy analysis. These data were combined in a ‘Non-Domestic Energy Efficiency Database’ to describe the location and physical attributes of each property and its energy consumption. The aim was to support the generation of a range of energy-efficiency statistics for the industrial, commercial and institutional sectors of the non-domestic building stock, and to provide robust evidence for national energy-efficiency and carbon-reduction policy development and monitoring. The work has brought together non-domestic energy data, property data and mapping in a ‘data framework’ for the first time. The results show what is possible when these data are integrated and the associated difficulties. A data framework offers the potential to inform energy-efficiency policy formation and to support its monitoring at a level of detail not previously possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the possible evolution of UK electricity demand as we move along three potential transition pathways to a low carbon economy in 2050.The shift away from fossil fuels through the electrification of demand is discussed, particularly through the uptake of heat pumps and electric vehicles in the domestic and passenger transport sectors. Developments in the way people and institutions may use energy along each of the pathways are also considered and provide a rationale for the quantification of future annual electricity demands in various broad sectors. The paper then presents detailed modelling of hourly balancing of these demands in the context of potential low carbon generation mixes associated with the three pathways. In all cases, hourly balancing is shown to be a significant challenge. To minimise the need for conventional generation to operate with very low capacity factors, a variety of demand side participation measures are modelled and shown to provide significant benefits. Lastly, projections of greenhouse gas emissions from the UK and the imports of fossil fuels to the UK for each of the three pathways are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial kitchens are one of the most profligate users of gas, water and electricity in the UK and can leave a large carbon footprint. It is estimated that the total energy consumption of Britain’s catering industry is in excess of 21,600 million kWh per year. In order to facilitate appropriate energy reduction within licensed restaurants, energy use must be translated into a form that can be compared between kitchens to enable operators to assess how they are improving and to allow rapid identification of facilities which require action. A review of relevant literature is presented and current benchmarking methods are discussed in order to assist in the development and categorisation of benchmarking energy reduction in commercial kitchens. Energy use within UK industry leading brands is discussed for the purpose of benchmarking in terms of factors such as size and output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 73 domestic households across three cities have been studied. This was carried out through a questionnaire survey, calculated national metering data and electricity measurements. All together nine appliance groups were identified. The results showed the mean electricity consumption for the households considering the calculated consumption from bills and the survey to be t = 4.23; p < 0.000067, two-tailed. The findings of this paper focus on a relatively small sample size (73). It would therefore not be wise to draw sweeping conclusions from the analysis or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on electricity consumption patterns relating to different end uses in domestic houses in Botswana is virtually non-existent, despite the fact that the total electricity consumption patterns are available. This can be attributed to the lack of measured and quantified data and in other instances the lack of modern technology to perform such investigations. This paper presents findings from initial studies that are envisaged to bridge the gap. Electricity consumption patterns of 275 domestic households in Gaborone (the capital city of Botswana) have been studied. This was carried out through a questionnaire survey and electricity measurements. Households were categorized based on the number of people occupying the house. From the study, it was evident that the number of people influences the amount of energy a household use although this cannot be treated as an independent factor when assessing energy use. The study also indicated that heating, cooling and domestic hot water (DHW) account for over 30% of energy used in the home. This is worth considering in energy consumption reduction measures. Due to a small sample size, it would not be wise to draw sweeping conclusions from the analysis of this paper or to make statements that would be aimed at influencing policies. However, the results presented forms a formidable base for further research, which is currently on going.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses examples from a Swedish study to suggest some ways in which cultural variation could be included in studies of thermal comfort. It is shown how only a slight shift of focus and methodological approach could help us discover aspects of human life that add to previous knowledge within comfort research of how human beings perceive and handle warmth and cold. It is concluded that it is not enough for buildings, heating systems and thermal control devices to be energy-efficient in a mere technical sense. If these are to help to decrease, rather than to increase, energy consumption, they have to support those parts of already existing habits and modes of thought that have the potential for low energy use. This is one reason why culture-specific features and emotional cores need to be investigated and deployed into the study and development of thermal comfort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different shapes of asymmetric awnings for east and west windows are investigated mathematically as well as by measurement in a model. A box with 90 cm side and a 30x30 cm window was placed outdoor in overcast weather and the daylight factor was measured at the bottom of the box when the window was unshaded or equipped with different awnings. The average daylight factor in the box decreased from 4.6% for the unshaded window to 1.0% when a full awning was used. With “the best” asymmetrical awning, the average daylight factor was 80% larger than with the full awing. Using Dutch climate, calculation of the energy from direct radiation transmitted through the window during the cooling season showed that this was decreased from 100% as an annual mean for the unshaded window down 22% with a full awing. With “the best” asymmetrical awning, 26% of the energy was transmitted. Calculation of the indoor temperature in a hypothetical row house in Netherlands show that the use of either normal or asymmetrical awnings considerable decrease the indoor temperature during the hot season. Therefore the use of asymmetrical awnings for east or west faced windows considerable can increase the daylight in buildings, with almost no change in overheating, compared to if traditional awnings are used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.