929 resultados para Energy Performance of Buildings Directive
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
Na sequência da integração da energia eólica em larga escala foram estabelecidos códigos de rede pelos vários operadores de sistema, exigindo que os parques eólicos permaneçam em serviço durante e após a ocorrência de defeitos na rede a montante. Nos parques eólicos equipados com sistemas de velocidade constante este requisito pode ser assegurado pela instalação, no ponto de interligação à rede, de equipamento de compensação dinâmica de potência reactiva, controlado como fonte de tensão, sendo as funções de controlo baseadas em medidas efectuadas no ponto de interligação relativamente às componentes directas da tensão e da corrente. Como a adopção deste tipo de soluções externas é adequada ao funcionamento do sistema em regime equilibrado, este artigo foca a avaliação do desempenho da solução no caso da ocorrência de defeitos assimétricos. Os resultados obtidos através das simulações dinâmicas evidenciam o aparecimento de sobre tensões nas fases não afectadas pelo defeito que poderão colocar o parque eólico fora de serviço.
Resumo:
We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.
Resumo:
The climatology of the OPA/ARPEGE-T21 coupled general circulation model (GCM) is presented. The atmosphere GCM has a T21 spectral truncation and the ocean GCM has a 2°×1.5° average resolution. A 50-year climatic simulation is performed using the OASIS coupler, without flux correction techniques. The mean state and seasonal cycle for the last 10 years of the experiment are described and compared to the corresponding uncoupled experiments and to climatology when available. The model reasonably simulates most of the basic features of the observed climate. Energy budgets and transports in the coupled system, of importance for climate studies, are assessed and prove to be within available estimates. After an adjustment phase of a few years, the model stabilizes around a mean state where the tropics are warm and resemble a permanent ENSO, the Southern Ocean warms and almost no sea-ice is left in the Southern Hemisphere. The atmospheric circulation becomes more zonal and symmetric with respect to the equator. Once those systematic errors are established, the model shows little secular drift, the small remaining trends being mainly associated to horizontal physics in the ocean GCM. The stability of the model is shown to be related to qualities already present in the uncoupled GCMs used, namely a balanced radiation budget at the top-of-the-atmosphere and a tight ocean thermocline.
Resumo:
In this paper we evaluate the performance of our earlier proposed enhanced relay-enabled distributed coordination function (ErDCF) for wireless ad hoc networks. The idea of ErDCF is to use high data rate nodes to work as relays for the low data rate nodes. ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 distributed coordination function (DCF). This is a result of. 1) using relay which helps to increase the throughput and lower overall blocking time of nodes due to faster dual-hop transmission, 2) using dynamic preamble (i.e. using short preamble for the relay transmission) which further increases the throughput and lower overall blocking time and also by 3) reducing unnecessary overhearing (by other nodes not involved in transmission). We evaluate the throughput and energy performance of the ErDCF with different rate combinations. ErDCF (11,11) (ie. R1=R2=11 Mbps) yields a throughput improvement of 92.9% (at the packet length of 1000 bytes) and an energy saving of 72.2% at 50 nodes.
Resumo:
Given that the next and current generation networks will coexist for a considerable period of time, it is important to improve the performance of existing networks. One such improvement recently proposed is to enhance the throughput of ad hoc networks by using dual-hop relay-based transmission schemes. Since in ad hoc networks throughput is normally related to their energy consumption, it is important to examine the impact of using relay-based transmissions on energy consumption. In this paper, we present an analytical energy consumption model for dual-hop relay-based medium access control (MAC) protocols. Based on the recently reported relay-enabled Distributed Coordination Function (rDCF), we have shown the efficacy of the proposed analytical model. This is a generalized model and can be used to predict energy consumption in saturated relay-based ad hoc networks. This model can predict energy consumption in ideal environment and with transmission errors. It is shown that using a relay results in not only better throughput but also better energy efficiency. Copyright (C) 2009 Rizwan Ahmad et al.
Resumo:
People's interaction with the indoor environment plays a significant role in energy consumption in buildings. Mismatching and delaying occupants' feedback on the indoor environment to the building energy management system is the major barrier to the efficient energy management of buildings. There is an increasing trend towards the application of digital technology to support control systems in order to achieve energy efficiency in buildings. This article introduces a holistic, integrated, building energy management model called `smart sensor, optimum decision and intelligent control' (SMODIC). The model takes into account occupants' responses to the indoor environments in the control system. The model of optimal decision-making based on multiple criteria of indoor environments has been integrated into the whole system. The SMODIC model combines information technology and people centric concepts to achieve energy savings in buildings.
Resumo:
This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system
Resumo:
The impact of ceiling geometries on the performance of lightshelves was investigated using physical model experiments and radiance simulations. Illuminance level and distribution uniformity were assessed for a working plane in a large space located in sub-tropical climate regions where innovative systems for daylighting and shading are required. It was found that the performance of the lightshelf can be improved by changing the ceiling geometry; the illuminance level increased in the rear of the room and decreased in the front near the window compared to rooms having conventional horizontal ceilings. Moreover, greater uniformity was achieved throughout the room as a result of reducing the difference in the illuminance level between the front and rear of the room. Radiance simulation results were found to be in good agreement with physical model data obtained under a clear sky and high solar radiation. The best ceiling shape was found to be one that is curved in the front and rear of the room.
Resumo:
1 The recent increase in planting of selected willow clones as energy crops for biomass production has resulted in a need to understand the relationship between commonly grown, clonally propagated genotypes and their pests. 2 For the first time, we present a study of the interactions of six willow clones and a previously unconsidered pest, the giant willow aphid Tuberolachnus salignus. 3 Tuberolachnus salignus alatae displayed no preference between the clones, but there was genetic variation in resistance between the clones; Q83 was the most resistant and led to the lowest reproductive performance in the aphid 4 Maternal effects buffered changes in aphid performance. On four tested willow clones fecundity of first generation aphids on the new host clone was intermediate to that of the second generation and that of the clone used to maintain the aphids in culture. 5 In the field, patterns of aphid infestation were highly variable between years, with the duration of attack being up to four times longer in 1999. In both years there was a significant effect of willow clone on the intensity of infestation. However, whereas Orm had the lowest intensity of infestation in the first year, Dasyclados supported a lower population level than other monitored clones in the second year.
Resumo:
In this study, the performance, yield and characteristics of a 16 year old photovoltaic (PV) system installation have been investigated. The technology, BP Saturn modules which were steel-blue polycrystalline silicon cells are no longer in production. A bespoke monitoring system has been designed to monitor the characteristics of 6 refurbished strings, of 18 modules connected in series. The total output of the system is configured to 6.5 kWp (series to parallel configuration). In addition to experimental results, the performance ratio (PR) of known values was simulated using PVSyst, a simulation software package. From calculations using experimental values, the PV system showed approximately 10% inferior power outputs to what would have been expected as standard test conditions. However, efficiency values in comparison to standard test conditions and the performance ratio (w75% from PVSyst simulations) over the past decade have remained practically the same. This output though very relevant to the possible performance and stability of aging cells, requires additional parametric studies to develop a more robust argument. The result presented in this paper is part of an on-going investigation into PV system aging effects.
Resumo:
This paper investigates the price effect of EPC ratings on the residential dwelling prices in Wales. It examines the capitalisation of energy efficiency ratings into house prices using two approaches. The first adopts a cross-sectional framework to investigate the effect of EPC band (and EPC rating) on a large sample of dwelling transactions. The second approach is based on a repeat-sales methodology to examine the impact of EPC band and rating on house price appreciation. The results show that, controlling for other price influencing dwelling characteristics, EPC band does affect house prices. This observed influence of EPC on price may not be a result of energy performance alone; the effect may be due to non-energy related benefits associated with certain types, specifications and ages of dwellings or there may be unobserved quality differences unrelated to energy performance such as better quality fittings and materials. An analysis of the private rental segment reveals that, in contrast to the general market, low-EPC rated properties were not traded at a significant discount, suggesting different implicit prices of potential energy savings for landlords and owner-occupiers.
Resumo:
This thesis is an empirical-based study of the European Union’s Emissions Trading Scheme (EU ETS) and its implications in terms of corporate environmental and financial performance. The novelty of this study includes the extended scope of the data coverage, as most previous studies have examined only the power sector. The use of verified emissions data of ETS-regulated firms as the environmental compliance measure and as the potential differentiating criteria that concern the valuation of EU ETS-exposed firms in the stock market is also an original aspect of this study. The study begins in Chapter 2 by introducing the background information on the emission trading system (ETS), which focuses on (i) the adoption of ETS as an environmental management instrument and (ii) the adoption of ETS by the European Union as one of its central climate policies. Chapter 3 surveys four databases that provide carbon emissions data in order to determine the most suitable source of the data to be used in the later empirical chapters. The first empirical chapter, which is also Chapter 4 of this thesis, investigates the determinants of the emissions compliance performance of the EU ETS-exposed firms through constructing the best possible performance ratio from verified emissions data and self-configuring models for a panel regression analysis. Chapter 5 examines the impacts on the EU ETS-exposed firms in terms of their equity valuation with customised portfolios and multi-factor market models. The research design takes into account the emissions allowance (EUA) price as an additional factor, as it has the most direct association with the EU ETS to control for the exposure. The final empirical Chapter 6 takes the investigation one step further, by specifically testing the degree of ETS exposure facing different sectors with sector-based portfolios and an extended multi-factor market model. The findings from the emissions performance ratio analysis show that the business model of firms significantly influences emissions compliance, as the capital intensity has a positive association with the increasing emissions-to-emissions cap ratio. Furthermore, different sectors show different degrees of sensitivity towards the determining factors. The production factor influences the performance ratio of the Utilities sector, but not the Energy or Materials sectors. The results show that the capital intensity has a more profound influence on the utilities sector than on the materials sector. With regard to the financial performance impact, ETS-exposed firms as aggregate portfolios experienced a substantial underperformance during the 2001–2004 period, but not in the operating period of 2005–2011. The results of the sector-based portfolios show again the differentiating effect of the EU ETS on sectors, as one sector is priced indifferently against its benchmark, three sectors see a constant underperformance, and three sectors have altered outcomes.