502 resultados para Endo-glucanases
Resumo:
The reaction between [Mo(eta(3)-C3H5)(CO)(2)(NCMe)(2)Br] (1) and the ferrocenylamidobenzimidazole ligands FcCO(NH(2)benzim) (L1) and (FcCO)(2)(NHbenzim) (L2) led to a binuclear (2) and a trinuclear (3) Mo-Fe complex, respectively. The single-crystal X-ray structure of [Mo(eta(3)-C3H5)(CO)(2)(L2)Br] [L2 = {[(eta(5)-C5H5)Fe(eta(5)-C5H4CO)](2)(2-NH-benzimidazol-yl)}] shows that L2 is coordinated to the endo Mo(eta(3)-C3H5)(CO)(2) group in a kappa(2)-N,O-bidentate chelating fashion whereas the Mo-II centre displays a pseudooctahedral environment with Br occupying an equatorial position. Complex 2 was formulated as [MO(eta(3)-C3H5)(CO)(2)(L1)Br] on the basis of a combination of spectroscopic data, elemental analysis, conductivity and DFT calculations. L1 acts as a kappa(2)-N,N-bidentate ligand. In both L1 and L2, the HOMOs are mainly localised on iron while the C=O bond(s) contribute to the LUMO(s) and the next highest energy orbitals are Fe-allyl antibonding orbitals. When the ligands bind to Mo(eta(3)-C3H5)(CO)(2)Br, the greatest difference is that Mo becomes the strongest contributor to the HOMO. Electrochemical studies show that, in complex 2, no electronic interaction exists between the two ferrocenyl ligands and that the first electron has been removed from the Mo-II-centred HOMO. (c) Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.
Resumo:
Postembedding immunoelectron microscopy has been used to investigate the diffusibility of an endo-beta-1,4-glucanase and a xylanase from A. niger in soybean. The results showed more specific localisation of the enzymes into the protein and lipid bodies of soybean cells. This was against our hypothesis that suggested that the enzymes should be localised in the cell wall.
Resumo:
Irradiation of 5S-5-O-tert-butyldimethylsiloxymethylfuran-2(5H)-one 1 in acetonitrile yields the C2-symmetric bis(lactone), 1S,2S,6S,7S-[3S,10S]-bis-tert-butyldimethylsiloxymethyl-4,9-dioxatricyclo[5.3.0.02,6]deca-5,8-dione 6, and a 3-substituted intramolecular product resulting from an apparent 8-endo-trig cyclisation.
Resumo:
The reaction of 2-chloro-3-methyl-1,4-naphthoquinone (3) with the anion of ethyl cyanoacetate led to a mixture of two epimeric fused-ring cyclopropane compounds, characterised as exo- and endo-1-cyano-1 -ethoxycarbonyl-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]naphthalene-2,7-dione (8) and (9). Various hydrolysis products of these were prepared and an X-ray crystallographic analysis was carried out on one of them, 1-carbamoyl-1 -carboxy-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]-naphthalene-2,7-dione (17). The reaction of 2-methyl-1,4-naphthoquinone (1) with ethyl diazoacetate gave a fused pyrazoline derivative, 3-ethoxycarbonyl-4-hydroxy-9a-methyl-1,9a-dihydro-benz[f]indazol-9-one (22), while reaction of 2-methyl-3-nitro-1,4-naphthoquinone (5) with diazomethane led to a fused Δ2-isoxazoline N-oxide, 3a-methyl-3,3a-dihydroisoxazolo[3,4-b]naphthalene-4,9-dione 1-oxide (26).
Resumo:
Abstract: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 degrees C) and stored under different regimes (1, 3, 6 and 6 1 degrees C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 degrees C, producing a considerable saving in energy and costs.
Resumo:
Background Siglec-7, a sialic acid binding inhibitory receptor expressed by NK cells is masked in vivo by a so far unknown ligand. It shows a strong binding prevalence for α-2,8-linked disialic acids in vitro. Results Here we describe the expression of PSA-NCAM (α-2,8-linked polysialic acid modified NCAM) on functional adult peripheral blood natural killer cells and examine its possible role in masking Siglec-7. Unmasking of Siglec-7 using Clostridium perfringens neuraminidase massively reduces NK cell cytotoxicity. By contrast a specific removal of PSA using Endo-NF does not lead to a reduction of NK cell cytotoxicity. Conclusion The results presented here therefore indicate that PSA-NCAM is not involved in masking Siglec-7.
Resumo:
Background: Podosphaera aphanis, the causal agent of strawberry powdery mildew causes significant economic loss worldwide. Methods: We used the diploid strawberry species Fragaria vesca as a model to study plant pathogen interactions. RNA-seq was employed to generate a transcriptome dataset from two accessions, F. vesca ssp. vesca Hawaii 4 (HW) and F. vesca f. semperflorens Yellow Wonder 5AF7 (YW) at 1 d (1 DAI) and 8 d (8 DAI) after infection. Results: Of the total reads identified about 999 million (92%) mapped to the F. vesca genome. These transcripts were derived from a total of 23,470 and 23,464 genes in HW and YW, respectively from the three time points (control, 1 and 8 DAI). Analysis identified 1,567, 1,846 and 1,145 up-regulated genes between control and 1 DAI, control and 8 DAI, and 1 and 8 DAI, respectively in HW. Similarly, 1,336, 1,619 and 968 genes were up-regulated in YW. Also 646, 1,098 and 624 down-regulated genes were identified in HW, while 571, 754 and 627 genes were down-regulated in YW between all three time points, respectively. Conclusion: Investigation of differentially expressed genes (log2 fold changes �5) between control and 1 DAI in both HW and YW identified a large number of genes related to secondary metabolism, signal transduction; transcriptional regulation and disease resistance were highly expressed. These included flavonoid 3´-monooxygenase, peroxidase 15, glucan endo-1,3-β-glucosidase 2, receptor-like kinases, transcription factors, germin-like proteins, F-box proteins, NB-ARC and NBS-LRR proteins. This is the first application of RNA-seq to any pathogen interaction in strawberry
Resumo:
Introduction: Endodontic chelators may extrude to apical tissues during instrumentation activating cellular events on periapical tissues. This study assessed in vitro the expression of nitric oxide (NO) concentrations by murine peritoneal macrophages after contact with MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna Laboratori Farmaceutici, Muggio, Italy), Smear Clear (Sybron Endo, Orange, CA), and EDTA (Biodinamica, Ibipora, PR, Brazil). Methods: Macrophage cells were obtained from Swiss mice after peritoneal lavage. Chelators were diluted in distilled water obtaining 12 concentrations, and MTT assay identified the concentrations, per group, displaying the highest cell viability (analysis of variance, p < 0.01). Selected concentrations were tested for NO expression using Griess reaction. Culture medium and lipopolysaccharide (LPS) were used as controls. Results: Analysis of variance and Tukey tests showed that all chelators displayed elevated NO concentrations compared with the negative control (p < 0.01). MTAD induced the lowest NO expression, followed by Tetraclean, EDTA, and Smear Clear. No difference was observed between MTAD and Tetraclean (p > 0.01), Tetraclean and EDTA (p > 0.01), and EDTA and Smear Clear (p > 0.01). LPS ranked similar to both EDTA and Smear Clear (p > 0.01). Conclusion: The tested endodontic chelators displayed severe proinflammatory effects on murine-cultured macrophages. Citric acid-based solutions induce lower No release than EDTA-based irrigants. (J Endod 2009;35:824-828)
Resumo:
The aim of this study was to evaluate in vitro the effect of different in-office bleaching systems on the surface morphology of bovine dentin. Thirty tooth fragments measuring 4 x 4mm, containing enamel and dentin, were obtained from the crowns of extracted bovine incisors. Samples were subjected to simulated intracoronal bleaching techniques using conventional (Opalescence Endo (R) and Whiteness Super Endo (R)) and light-activated systems (Opalescence Xtra (R) and Whiteness HP Maxx (R)). Controls were treated with either sodium perborate mixed with 10% hydrogen peroxide or no bleaching agent. The samples were observed under SEM and the recorded images were evaluated for topographic alterations. The ultrastructural alterations of dentin observed in this study varied greatly between groups according to the products used. Higher pH products (Whiteness HP Maxx (R) and Opalescence Xtra (R)) associated with in-office techniques yielded better maintenance of dentin ultrastructure. Apparently, both low pH and hydrogen peroxide oxidation play a role in altering the ultrastructure of dentin during internal dental bleaching. The use of alkaline products with reduced time of application (in-office techniques) may decrease such morphological alterations.
Resumo:
Mutations in the Na+-HCO3- cotransporter NBC1 cause severe proximal tubular acidosis (pRTA) associated with ocular abnormalities. Recent studies have suggested that at least some NBC1 mutants show abnormal trafficking in the polarized cells. This study identified a new homozygous NBC1 mutation (G486R) in a patient with severe pRTA. Functional analysis in Xenopus oocytes failed to detect the G486R activity due to poor surface expression. In ECV304 cells, however, G486R showed the efficient membrane expression, and its transport activity corresponded to approximately 50% of wild-type (WT) activity. In Madin-Darby canine kidney (MDCK) cells, G486R was predominantly expressed in the basolateral membrane domain as observed for WT. Among the previously identified NBC1 mutants that showed poor surface expression in oocytes, T485S showed the predominant basolateral expression in MDCK cells. On the other hand, L522P was exclusively retained in the cytoplasm in ECV304 and MDCK cells, and functional analysis in ECV304 cells failed to detect its transport activity. These results indicate that G486R, like T485S, is a partial loss of function mutation without major trafficking abnormalities, while L522P causes the clinical phenotypes mainly through its inability to reach the plasma membranes. Multiple experimental approaches would be required to elucidate potential disease mechanism by NBC1 mutations.
Resumo:
Cell wall storage polysaccharides (CWSPs) are found as the principal storage compounds in seeds of many taxonomically important groups of plants. These groups developed extremely efficient biochemical mechanisms to disassemble cell walls and use the products of hydrolysis for growth. To accumulate these storage polymers, developing seeds also contain relatively high activities of noncellulosic polysaccharide synthases and thus are interesting models to seek the discovery of genes and enzymes related to polysaccharide biosynthesis. CWSP systems offer opportunities to understand phenomena ranging from polysaccharide deposition during seed maturation to the control of source-sink relationship in developing seedlings. By studying polysaccharide biosynthesis and degradation and the consequences for cell and physiological behavior, we can use these models to develop future biotechnological applications.
Resumo:
Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, alpha-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased alpha-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased alpha-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.
Resumo:
The endosperm of seeds of Sesbania virgata (Cav.) Pers. accumulates galactomannan as a cell wall storage polysaccharide. It is hydrolysed by three enzymes, one of them being alpha-galactosidase. A great amount of protein bodies is found in the cytoplasm of endospermic cells, which are thought to play the major role as a nitrogen reserve in this seed. The present work aimed at understanding how the production of enzymes that degrade storage compounds is controlled. We performed experiments with addition of inhibitors of transcription (actinomycin-d and alpha-amanitin) and translation (cycloheximide) during and after germination. In order to follow the performance of storage mobilisation, we measured fresh mass, protein contents and alpha-galactosidase activity. All the inhibitors tested had little effect on seed germination and seedling development. Actinomycin-d and cycloheximide provoked a slight inhibition of the storage protein degradation and concomitantly lead to an elevation of the alpha-galactosidase activity. Although alpha-amanitin showed some effect on seedling development at latter stages, it presented the former effect and did not change galactomannan degradation performance. Our data suggest that some of the proteases may be synthesised de novo, whereas alpha-galactosidase seems to be present in the endosperm cells probably as an inactive polypeptide in the protein bodies, being probably activated by proteolysis when the latter organelle is disassembled. These evidences suggest the existence of a connection between storage proteins and carbohydrates mobilisation in seeds of S. virgata, which would play a role by assuring a balanced afflux of the carbon and nitrogen to the seedling development.
Resumo:
Hemopressin (Hp), a 9-residue alpha-hemoglobin-derived peptide, was previously reported to function as a CB(1) cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hp alpha) or two (VD-Hp alpha) additional amino acids, as well as a beta-hemoglobinderived peptide with sequence similarity to that of hemopressin (VD-Hp beta). Characterization of the alpha-hemoglobin-derived peptides using binding and functional assays shows that in contrast to Hp, which functions as a CB(1) cannabinoid receptor antagonist, both RVD-Hp alpha and VD-Hp alpha function as agonists. Studies examining the increase in the phosphorylation of ERK1/2 levels or release of intracellular Ca(2+) indicate that these peptides activate a signal transduction pathway distinct from that activated by the endo-cannabinoid, 2-arachidonoylglycerol, or the classic CB(1) agonist, Hu-210. This finding suggests an additional mode of regulation of endogenous cannabinoid receptor activity. Taken together, these results suggest that the CB(1) receptor is involved in the integration of signals from both lipid-and peptide-derived signaling molecules.-Gomes, I., Grushko, J. S., Golebiewska, U., Hoogendoorn, S., Gupta, A., Heimann, A. S., Ferro, E. S., Scarlata, S., Fricker, L. D., Devi, L. A. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 23, 3020-3029 (2009). www.fasebj.org