833 resultados para Emerging pesticides
Resumo:
The influence of professional identity and self-interest on the educational and career choices of the emerging Information and Communications Technology (ICT) workforce is considered in this thesis. Interviews were conducted with 52 ICT students from four Australian tertiary education institutions and the findings indicated that professional identity and self-interest should be considered together, rather than separately, to understand career decisions in relation to the ICT industry. Professional identity is associated with the accrual of symbolic resources including status and esteem, mastery, sense of belonging and attachment. By contrast, self-interest is associated with the perceived likelihood of the accrual of material (economic and social) resources.
Resumo:
Objective and background. Tobacco smoking, pancreatitis and diabetes mellitus are the only known causes of pancreatic cancer, leaving ample room for yet unidentified determinants. This is an empirical study on a Finnish data on occupational exposures and pancreatic cancer risk, and a non-Bayesian and a hierarchical Bayesian meta-analysis of data on occupational factors and pancreatic cancer. Methods. The case-control study analyzed 595 incident cases of pancreatic cancer and 1,622 controls of stomach, colon, and rectum cancer, diagnosed 1984-1987 and known to be dead by 1990 in Finland. The next-of-kin responded to a mail questionnaire on job and medical histories and lifestyles. Meta-analysis of occupational risk factors of pancreatic cancer started off with 1,903 identified studies. The analyses were based on different subsets of that database. Five epidemiologists examined the reports and extracted the pertinent data using a standardized extraction form that covered 20 study descriptors and the relevant relative risk estimates. Random effects meta-analyses were applied for 23 chemical agents. In addition, hierarchical Bayesian models for meta-analysis were applied to the occupational data of 27 job titles using job exposure matrix as a link matrix and estimating the relative risks of pancreatic cancer associated with nine occupational agents. Results. In the case-control study, logistic regressions revealed excess risks of pancreatic cancer associated with occupational exposures to ionizing radiation, nonchlorinated solvents, and pesticides. Chlorinated hydrocarbon solvents and related compounds, used mainly in metal degreasing and dry cleaning, are emerging as likely risk factors of pancreatic cancer in the non-Bayesian and the hierarchical Bayesian meta-analysis. Consistent excess risk was found for insecticides, and a high excess for nickel and nickel compounds in the random effects meta-analysis but not in the hierarchical Bayesian meta-analysis. Conclusions. In this study occupational exposure to chlorinated hydrocarbon solvents and related compounds and insecticides increase risk of pancreatic cancer. Hierarchical Bayesian meta-analysis is applicable when studies addressing the agent(s) under study are lacking or very few, but several studies address job titles with potential exposure to these agents. A job-exposure matrix or a formal expert assessment system is necessary in this situation.
Resumo:
The emerging disease program seeks to gain information on the distribution of cereal pathogens\pathotypes and potential for outbreaks across the norther region and options for their control. It is looking for an improved understanding of varietal (APR) reaction to stripe rust (YR) in prevailing weather conditions and in the face of climate change. Replicated field trials are used in the evaluation of varietal, cultural and chemical management of YR. Best management practice packages are disseminated to stake holders, including a YR predictive tool.
Resumo:
Cereal crops can suffer substantial damage if frosts occur at heading. Identification of post-head-emergence frost (PHEF) resistance in cereals poses a number of unique and difficult challenges. Many decades of research have failed to identify genotypes with PHEF resistance that could offer economically significant benefit to growers. Research and breeding gains have been limited by the available screening systems. Using traditional frost screening systems, genotypes that escape frost injury in trials due to spatial temperature differences and/or small differences in phenology can be misidentified as resistant. We believe that by improving techniques to minimize frost escapes, such ofalse-positive' results can be confidently identified and eliminated. Artificial freezing chambers or manipulated natural frost treatments offer many potential advantages but are not yet at the stage where they can be reliably used for frost screening in breeding programmes. Here we describe the development of a novel photoperiod gradient method (PGM) that facilitates screening of genotypes of different phenology under natural field frosts at matched developmental stages. By identifying frost escapes and increasing the efficiency of field screening, the PGM ensures that research effort can be focused on finding genotypes with improved PHEF resistance. To maximize the likelihood of identifying PHEF resistance, we propose that the PGM form part of an integrated strategy to (i) source germplasm;(ii) facilitate high throughput screening; and (iii) permit detailed validation. PGM may also be useful in other studies where either a range of developmental stages and/or synchronized development are desired.
Resumo:
A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.
Resumo:
A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.
Resumo:
The Cotton Catchment Communities Cooperative Research Centre began during a period of rapid uptake of Bollgard II® cotton, which contains genes to express two Bt proteins that control the primary pests of cotton in Australia, Helicoverpa armigera and H. punctigera. The dramatic uptake of this technology presumably resulted in strong selection pressure for resistance in Helicoverpa spp. against the Bt proteins. The discovery of higher than expected levels of resistance in both species against one of the proteins in Bollgard II® cotton (Cry2Ab) led to significant re-evaluation of the resistance management plan developed for this technology, which was a core area of research for the Cotton CRC. The uptake of Bollgard II® cotton also led to a substantial decline in pesticide applications against Helicoverpa spp. (from 10–14 to 0–3 applications per season). The low spray environment allowed some pests not controlled by the Bt proteins to emerge as more significant pests, especially sucking species such as Creontiades dilutus and Nezara viridula. A range of other minor pests have also sporadically arisen as problems. Lack of knowledge and experience with these pests created uncertainty and encouraged insecticide use, which threatened to undermine the gains made with Bollgard II® cotton. Here we chronicle the achievements of the Cotton CRC in providing the industry with new knowledge and management strategies for these pests.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.
Resumo:
Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks. We evaluated the structure of rail networks for grain transport in the United States and Eastern Australia to identify the shortest paths for the anthropogenic dispersal of pests and mycotoxins, as well as the major sources, sinks, and bridges for movement. We found important differences in the risk profile in these two countries and identified priority control points for sampling, detection, and management. An understanding of these key locations and roles within the network is a new type of basic research result in postharvest science and will provide insights for the integrated pest management of high-risk subpopulations, such as pesticide-resistant insect pests.
Resumo:
Background: The development of a horse vaccine against Hendra virus has been hailed as a good example of a One Health approach to the control of human disease. Although there is little doubt that this is true, it is clear from the underwhelming uptake of the vaccine by horse owners to date (approximately 10%) that realisation of a One Health approach requires more than just a scientific solution. As emerging infectious diseases may often be linked to the development and implementation of novel vaccines this presentation will discuss factors influencing their uptake; using Hendra virus in Australia as a case study. Methods: This presentation will draw on data collected from the Horse owners and Hendra virus: A Longitudinal cohort study To Evaluate Risk (HHALTER) study. The HHALTER study is a mixed methods research study comprising a two-year survey-based longitudinal cohort study and qualitative interview study with horse owners in Australia. The HHALTER study has investigated and tracked changes in a broad range of issues around early uptake of vaccination, horse owner uptake of other recommended disease risk mitigation strategies, and attitudes to government policy and disease response. Interviews provide further insights into attitudes towards risk and decision-making in relation to vaccine uptake. A combination of quantitative and qualitative data analysis will be reported. Results: Data collected from more than 1100 horse owners shortly after vaccine introduction indicated that vaccine uptake and intention to vaccinate was associated with a number of risk perception factors and financial cost factors. In addition, concerns about side effects and veterinarians refusing to treat unvaccinated horses were linked to uptake. Across the study period vaccine uptake in the study cohort increased to more than 50%, however, concerns around side effects, equine performance and breeding impacts, delays to full vaccine approvals, and attempts to mandate vaccination by horse associations and event organisers have all impacted acceptance. Conclusion: Despite being provided with a safe and effective vaccine for Hendra virus that can protect horses and break the transmission cycle of the virus to humans, Australian horse owners have been reluctant to commit to it. General issues pertinent to novel vaccines, combined with challenges in the implementation of the vaccine have led to issues of mistrust and misconception with some horse owners. Moreover, factors such as cost, booster dose schedules, complexities around perceived risk, and ulterior motives attributed to veterinarians have only served to polarise attitudes to vaccine acceptance.
Resumo:
This project describes how Streptococcus agalactiae can be transmitted experimentally in Queensland grouper. The implications of this research furthers the relatedness between Australian S. agalactiae strains from animals and humans. Additionally, this research has developed diagnostic tools for Australian State Veterinary Laboratories and Universities, which will assist in State and National aquatic animal disease detection, surveillance, disease monitoring and reporting
Resumo:
Organochlorine pesticides (OCPs) are ubiquitous environmental contaminants with adverse impacts on aquatic biota, wildlife and human health even at low concentrations. However, conventional methods for their determination in river sediments are resource intensive. This paper presents an approach that is rapid and also reliable for the detection of OCPs. Accelerated Solvent Extraction (ASE) with in-cell silica gel clean-up followed by Triple Quadrupole Gas Chromatograph Mass Spectrometry (GCMS/MS) was used to recover OCPs from sediment samples. Variables such as temperature, solvent ratio, adsorbent mass and extraction cycle were evaluated and optimised for the extraction. With the exception of Aldrin, which was unaffected by any of the variables evaluated, the recovery of OCPs from sediment samples was largely influenced by solvent ratio and adsorbent mass and, to some extent, the number of cycles and temperature. The optimised conditions for OCPs extraction in sediment with good recoveries were determined to be 4 cycles, 4.5 g of silica gel, 105 ᴼC, and 4:3 v/v DCM: hexane mixture. With the exception of two compounds (α-BHC and Aldrin) whose recoveries were low (59.73 and 47.66 % respectively), the recovery of the other pesticides were in the range 85.35 – 117.97% with precision < 10 % RSD. The method developed significantly reduces sample preparation time, the amount of solvent used, matrix interference, and is highly sensitive and selective.
Resumo:
The symbols, signs, and traces of copyright and related intellectual property laws that appear on everyday texts, objects, and artifacts have multiplied exponentially over the past 15 years. Digital spaces have revolutionized access to content and transformed the ways in which content is porous and malleable. In this volume, contributors focus on copyright as it relates to culture. The editors argue that what «counts» as property must be understood as shifting terrain deeply influenced by historical, economic, cultural, religious, and digital perspectives. Key themes addressed include issues of how: • Culture is framed, defined, and/or identified in conversations about intellectual property; • The humanities and other related disciplines are implicated in intellectual property issues; • The humanities will continue to rub up against copyright (e.g., issues of authorship, authorial agency, ownership of texts); • Different cultures and bodies of literature approach intellectual property, and how competing dynasties and marginalized voices exist beyond the dominant U.S. copyright paradigm. Offering a transnational and interdisciplinary perspective, Cultures of Copyright offers readers – scholars, researchers, practitioners, theorists, and others – key considerations to contemplate in terms of how we understand copyright’s past and how we chart its futures.