960 resultados para Elevation
Resumo:
AIMS The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated with delayed arterial healing and impaired stent-related outcomes. The purpose of the present study is to compare directly the arterial healing response, angiographic efficacy and clinical outcomes between the Absorb BVS and metallic EES. METHODS AND RESULTS A total of 191 patients with acute STEMI were randomly allocated to treatment with the Absorb BVS or a metallic EES 1:1. The primary endpoint is the neointimal healing (NIH) score, which is calculated based on a score taking into consideration the presence of uncovered and malapposed stent struts, intraluminal filling defects and excessive neointimal proliferation, as detected by optical frequency domain imaging (OFDI) six months after the index procedure. The study will provide 90% power to show non-inferiority of the Absorb BVS compared with the EES. CONCLUSIONS This will be the first randomised study investigating the arterial healing response following implantation of the Absorb BVS compared with the EES. The healing response assessed by a novel NIH score in conjunction with results on angiographic efficacy parameters and device-oriented events will elucidate disease-specific applications of bioresorbable scaffolds.
Resumo:
The long-term risk associated with different coronary artery disease (CAD) presentations in women undergoing percutaneous coronary intervention (PCI) with drug-eluting stents (DES) is poorly characterized. We pooled patient-level data for women enrolled in 26 randomized clinical trials. Of 11,577 women included in the pooled database, 10,133 with known clinical presentation received a DES. Of them, 5,760 (57%) had stable angina pectoris (SAP), 3,594 (35%) had unstable angina pectoris (UAP) or non-ST-segment-elevation myocardial infarction (NSTEMI), and 779 (8%) had ST-segment-elevation myocardial infarction (STEMI) as clinical presentation. A stepwise increase in 3-year crude cumulative mortality was observed in the transition from SAP to STEMI (4.9% vs 6.1% vs 9.4%; p <0.01). Conversely, no differences in crude mortality rates were observed between 1 and 3 years across clinical presentations. After multivariable adjustment, STEMI was independently associated with greater risk of 3-year mortality (hazard ratio [HR] 3.45; 95% confidence interval [CI] 1.99 to 5.98; p <0.01), whereas no differences were observed between UAP or NSTEMI and SAP (HR 0.99; 95% CI 0.73 to 1.34; p = 0.94). In women with ACS, use of new-generation DES was associated with reduced risk of major adverse cardiac events (HR 0.58; 95% CI 0.34 to 0.98). The magnitude and direction of the effect with new-generation DES was uniform between women with or without ACS (pinteraction = 0.66). In conclusion, in women across the clinical spectrum of CAD, STEMI was associated with a greater risk of long-term mortality. Conversely, the adjusted risk of mortality between UAP or NSTEMI and SAP was similar. New-generation DESs provide improved long-term clinical outcomes irrespective of the clinical presentation in women.
Resumo:
We describe the recovery of three daily meteorological records for the southern Alps (Domodossola, Riva del Garda, and Rovereto), all starting in the second half of the nineteenth century. We use these new data, along with additional records, to study regional changes in the mean temperature and extreme indices of heat waves and cold spells frequency and duration over the period 1874–2015. The records are homogenized using subdaily cloud cover observations as a constraint for the statistical model, an approach that has never been applied before in the literature. A case study based on a record of parallel observations between a traditional meteorological window and a modern screen shows that the use of cloud cover can reduce the root-mean-square error of the homogenization by up to 30% in comparison to an unaided statistical correction. We find that mean temperature in the southern Alps has increased by 1.4°C per century over the analyzed period, with larger increases in daily minimum temperatures than maximum temperatures. The number of hot days in summer has more than tripled, and a similar increase is observed in duration of heat waves. Cold days in winter have dropped at a similar rate. These trends are mainly caused by climate change over the last few decades.
Resumo:
Variability in fire regime at the continental scale has primarily been attributed to climate change, often overshadowing the widely potential impact of human activities. However, human ignition modifies the rhythm of fire episodes occurrence (fire frequency), whereas land use alters vegetation composition and fuel load, and thus the amount of biomass burned. It is unclear, however, whether and how humans have exercised a significant influence over fire regimes at continental and millennial scales. Based on sedimentary charcoal records, we use new alternative estimate of fire frequency and biomass burned for the last 16000 years (here after 16 ky) that we evaluate with outputs from climate, vegetation, land use and population models. We find that pronounced regional-scale land use changes in southern Europe at the beginning of the Neolithic (8–6 ky), during the Bronze Age (5–4 ky) and the medieval period (1 ky) caused a doubling of fire frequency compared to the Holocene average (the last 11.5 ky). Despite anthropogenic influences, southern European biomass burned decreased from 7 ky, which is in line both with changes in orbital parameters leading climate cooling and also reductions in biomass availability because of land use. Our study underscores the role of elevation-dependent parameters, and particularly biomass and land management, as major drivers of fire regime variability. Results attest a determinant anthropogenic driving-force on fire regime and a decrease in fire-carbon emissions since 7 ky in Southern Europe.
Resumo:
Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.
Resumo:
OBJECTIVES Levels of inflammatory biomarkers associate with changes of coronary atheroma burden in statin-treated patients with stable coronary artery disease. This study sought to determine changes of plaque composition in vivo in relation to high-sensitivity C-reactive protein (hs-CRP) levels in patients with ST-elevation myocardial infarction (STEMI) receiving high-intensity statin therapy. METHODS The IBIS-4 study performed serial (baseline and 13-month), 2-vessel intravascular ultrasound (IVUS) and radiofrequency-IVUS of the non-infarct-related arteries in patients with STEMI treated with high-intensity statin therapy. The present analysis included 44 patients (80 arteries) with serial measurements of hs-CRP. RESULTS At follow-up, median low-density lipoprotein cholesterol (LDL-C) levels decreased from 126 to 77 mg/dl, HDL-C increased from 44 to 47 mg/dl, and hs-CRP decreased from 1.6 to 0.7 mg/L. Regression of percent atheroma volume (-0.99%, 95% CI -1.84 to -0.14, p = 0.024) was accompanied by reduction of percent fibro-fatty (p = 0.04) and fibrous tissue (p < 0.001), and increase in percent necrotic core (p = 0.006) and dense calcium (p < 0.001). Follow-up levels of hs-CRP, but not LDL-C, correlated with changes in percent necrotic core (p = 0.001) and inversely with percent fibrous tissue volume (p = 0.008). Similarly, baseline-to-follow-up change of hs-CRP correlated with the change in percent necrotic core volume (p = 0.02). CONCLUSIONS In STEMI patients receiving high-intensity statin therapy, stabilization of VH-IVUS-defined necrotic core was confined to patients with lowest on-treatment levels and greatest reduction of hs-CRP. Elevated CRP levels at follow-up may identify progression of high-risk coronary plaque composition despite intensive statin therapy and overall regression of atheroma volume.
Resumo:
BACKGROUND Biomarkers of myocardial injury increase frequently during transcatheter aortic valve implantation (TAVI). The impact of postprocedural cardiac troponin (cTn) elevation on short-term outcomes remains controversial, and the association with long-term prognosis is unknown. METHODS AND RESULTS We evaluated 577 consecutive patients with severe aortic stenosis treated with TAVI between 2007 and 2012. Myocardial injury, defined according to the Valve Academic Research Consortium (VARC)-2 as post-TAVI cardiac troponin T (cTnT) >15× the upper limit of normal, occurred in 338 patients (58.1%). In multivariate analyses, myocardial injury was associated with higher risk of all-cause mortality at 30 days (adjusted hazard ratio [HR], 8.77; 95% CI, 2.07-37.12; P=0.003) and remained a significant predictor at 2 years (adjusted HR, 1.98; 95% CI, 1.36-2.88; P<0.001). Higher cTnT cutoffs did not add incremental predictive value compared with the VARC-2-defined cutoff. Whereas myocardial injury occurred more frequently in patients with versus without coronary artery disease (CAD), the relative impact of cTnT elevation on 2-year mortality did not differ between patients without CAD (adjusted HR, 2.59; 95% CI, 1.27-5.26; P=0.009) and those with CAD (adjusted HR, 1.71; 95% CI, 1.10-2.65; P=0.018; P for interaction=0.24). Mortality rates at 2 years were lowest in patients without CAD and no myocardial injury (11.6%) and highest in patients with complex CAD (SYNTAX score >22) and myocardial injury (41.1%). CONCLUSIONS VARC-2-defined cTnT elevation emerged as a strong, independent predictor of 30-day mortality and remained a modest, but significant, predictor throughout 2 years post-TAVI. The prognostic value of cTnT elevation was modified by the presence and complexity of underlying CAD with highest mortality risk observed in patients combining SYNTAX score >22 and evidence of myocardial injury.
Resumo:
BACKGROUND: Cardiovascular diseases are the leading cause of death worldwide and in Switzerland. When applied, treatment guidelines for patients with acute ST-segment elevation myocardial infarction (STEMI) improve the clinical outcome and should eliminate treatment differences by sex and age for patients whose clinical situations are identical. In Switzerland, the rate at which STEMI patients receive revascularization may vary by patient and hospital characteristics. AIMS: To examine all hospitalizations in Switzerland from 2010-2011 to determine if patient or hospital characteristics affected the rate of revascularization (receiving either a percutaneous coronary intervention or a coronary artery bypass grafting) in acute STEMI patients. DATA AND METHODS: We used national data sets on hospital stays, and on hospital infrastructure and operating characteristics, for the years 2010 and 2011, to identify all emergency patients admitted with the main diagnosis of acute STEMI. We then calculated the proportion of patients who were treated with revascularization. We used multivariable multilevel Poisson regression to determine if receipt of revascularization varied by patient and hospital characteristics. RESULTS: Of the 9,696 cases we identified, 71.6% received revascularization. Patients were less likely to receive revascularization if they were female, and 80 years or older. In the multivariable multilevel Poisson regression analysis, there was a trend for small-volume hospitals performing fewer revascularizations but this was not statistically significant while being female (Relative Proportion = 0.91, 95% CI: 0.86 to 0.97) and being older than 80 years was still associated with less frequent revascularization. CONCLUSION: Female and older patients were less likely to receive revascularization. Further research needs to clarify whether this reflects differential application of treatment guidelines or limitations in this kind of routine data.
Resumo:
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a "maximum-sized" ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a "minimum" model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.