870 resultados para Electrochemistry impedance spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dielectric properties of the homologous series of newly synthesized nonchiral compounds N-(4-n-alkyloxy-2-hydroxy-benzylidene)-4-carbethoxyaniline, (n = 6, 8, 10, 12) having wide temperature range (∼60°C) smectic A (SmA) phase, have been studied by the impedance spectroscopy in the frequency range of 100 Hz to 1 MHz. Measurements have been carried out for two principal alignments (planar as well as homeotropic) of the SmA phase. Dielectric anisotropy (Δε' = ε'∥ - ε'⊥) for all the members of the series has been found to be negative for the whole temperature range of SmA phase. Magnitude of the dielectric anisotropy (|Δε'|) has been found to decrease with the number of alkyl chains. Relaxation frequencies corresponding to the rotation of the individual molecules about their short axes, lie below 1 MHz and obey the Arrhenius law by which activation energies have been determined. However, the relaxation frequencies corresponding to the rotation of the molecules about their short axes apparently lie above 10 MHz.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A creep resistant Mg alloy MRI 230D was subjected to laser surface treatment using Nd:YAG laser equipped with a fiber optics beam delivery system in argon atmosphere. The laser surface treatment produced a fine dendritic microstructure and this treatment was beneficial for the corrosion and wear resistance of the alloy. Long-term linear polarisation resistance and Electrochemical Impedance Spectroscopy measurements confirmed that the polarisation resistance values of laser treated material were twice as high as that for the untreated material. This improved behaviour was due to the finer and more homogenous microstructure of the laser treated surface. The laser treatment also increased surface hardness two times and reduced the wear rate by 25% due to grain refinement and solid solution strengthening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic conductivity and other physico-chemical properties of a soft matter composite electrolyte comprising of a polymer-sodium salt complex and a non-ionic plastic crystal are discussed here. The electrolyte under discussion comprises of polyethyleneoxide (PEO)-sodium triflate (NaCF3SO3) and succinonitrile (SN). Addition of SN to PEO-NaCF3SO3 resulted in significant enhancement in ionic conductivity. At 50% SN concentration (with respect to weight of polymer), the polymer-plastic composite electrolyte room temperature (= 25 degrees C) ionic conductivity was similar to 1.1 x 10(-4) Omega(-1) cm(-1), approximately 45 times higher than PEO-NaCF3SO3. Observations from ac-impedance spectroscopy along with X-ray diffraction, differential scanning calorimetry and Fourier transform inrared spectroscopy strongly suggest the enhancement in the composite is ionicconductivity due to enhanced ion mobility via decrease in crystallinity of PEO. The free standing composite polymer-plastic electrolytes were more compliable than PEO-NaCF3SO3 thus exhibiting no detrimental effects of succinonitrile addition on the mechanical stability of PEO-NaCF3SO3. We propose that the exploratory PEO-NaCF3SO3-SN system.discussed here will eventually be developed as a prototype electrolyte.for sodium-sulfur batteries capable of operating at ambient and.sub-ambient conditions. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dielectric response of pulsed laser ablated barium strontium titanate thin films were studied as a function of frequency and ambient temperature (from room temperature to 320 degrees C) by employing impedance spectroscopy. Combined modulus and impedance spectroscopic plots were used to study the response of the film, which in general may contain the grain, grain boundary, and the electrode/film interface as capacitive elements. The spectroscopic plots revealed that the major response was due to the grains, while contributions from the grain boundary or the electrode/film interface was negligible. Further observation from the complex impedance plot showed data points lying on a single semicircle, implying the response originated from a single capacitive element corresponding to the bulk grains. Conductivity plots against frequency at different temperatures suggested a response obeying the 'universal power law'. The value of the activation energies computed from the Arrhenius plots of both ac and dc conductivities with 1000/T were 0.97 and 1.04 eV, respectively. This was found to be in excellent agreement with published literature, and was attributed to the motion of oxygen vacancies within the bulk. (C) 2000 American Institute of Physics. [S0021-8979(00)02801-2].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have prepared a new nanocomposite polymer electrolyte using nanoparticles of hydrotalcite, an anionic clay, as the filler. Hydrotalcite has the chemical composition [M-1-x(2+) M-x(3+) (OH)(2)](x+) [A(x/n)(n-)center dot mH(2)O] where M2+ is a divalent cation (e.g. Mg2+, Ni2+, Co2+,etc.) and M3+ is a trivalent cation (e.g. Al3+, Fe3+, Cr3+, etc.). A(n-) is an anion intercalated between the positively charged double hydroxide layers. The nanoparticles of [Mg0.67Al0.33 (OH)(2)] [(CO3)(0.17)center dot mH(2)O] were prepared by the co-precipitation method (average particle size as observed by TEM similar to 50 nm) and were doped into poly(ethylene glycol) PEG (m.w.2000) complexed with LiCIO4. Samples with different wt.% of hydrotalcite were prepared and characterized using XRD, DSC, TGA, impedance spectroscopy and NMR. Ionic conductivity for the pristine sample, similar to 7.3 x 10(-7) S cm(-1), was enhanced to a maximum of = 1.1 x 10(-5) S cm(-1) for 3.6 wt.% nanoparticle doped sample. We propose that the enhancement of ionic conductivity is caused by percolation effects of the high conductivity paths provided by interfaces between the nanoparticles and the polymer electrolyte. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrical properties of Co1−xZnxFe2O4 (x=0–1) spinel ferrites were investigated by impedance spectroscopy. The grain‐boundary resistance was found to increase as a function of composition up to x=0.6, and decreases beyond x=0.6. The variation in the bulk resistance and the activation energy as a function of composition is found to exhibit a similar trend whereas the grain resistance appears to be an independent parameter. The observed results suggest that the bulk properties of solid solution spinel ferrites are primarily controlled by the grain‐boundary phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scheelite type solid electrolytes, Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) have been synthesized using a solid state method. Their structure and ionic conductivity (a) were obtained by single crystal X-ray diffraction and ac-impedance spectroscopy, respectively. X-ray diffraction studies reveal a space group of I4(1)/a for Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) scheelite compounds. The unsubstituted Li0.5Ce0.5MoO4 showed lithium ion conductivity similar to 10(-5)-10(-3) Omega(-1)cm(-1) in the temperature range of 300-700 degrees C (sigma = 2.5 x 10(-3) Omega(-1) cm(-1) at 700 degrees C). The substituted compounds show lower conductivity compared to the unsubstituted compound, with the magnitude of ionic conductivity being two (in the high temperature regime) to one order (in the low temperature regime) lower than the unsubstituted compound. Since these scheelite type structures show significant conductivity, the series of compounds could serve in high temperature lithium battery operations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by reactive radio frequency (rf) magnetron sputtering from Li3PO4 powder compact target. High deposition rates and ease of manufacturing powder target compared with conventional ceramic Li3PO4 targets offer flexibility in handling and reduce the cost associated. Rf power density varied from 1.7 Wcm(-2) to 3 Wcm(-2) and N-2 flow from 10 to 30 sccm for a fixed substrate to target distance of 4 cm for best ionic conductivity. The surface chemical analysis done by X-ray photoelectron spectroscopy showed incorporation of nitrogen into the film as both triply, NE and doubly. Nd coordinated form. With increased presence of NE, ionic conductivity of LiPON was found to be increasing. The electrochemical impedance spectroscopy of LiPON films confirmed an ionic conductivity of 1.1 x 10(-6) Scm(-1) for optimum rf power and N-2 flow conditions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anatase titania nanotubes (TNTs) have been synthesized from P25 TiO2 powder by alkali hydrothermal method followed by post annealing. The microstructure analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of anatase nanotubes with a diameter of 9-10 nm. These NTs are used to make photo anode in dye-sensitized solar cells (DSSCs). Layer by layer deposition with curing of each layer at 350 C is employed to realize films of desired thickness. The performance of these cells is studied using photovoltaic measurements. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the effect of thickness on the performance of these cells. These studies revealed that the thickness of TiO2 has a pronounced impact on the cell performance and the optimum thickness lies in the range of 10-14 mu m. In comparison to dye solar cells made of P25, TNTs based cells exhibit an improved open circuit voltage and fill factor (FF) due to an increased electron lifetime, as revealed by EIS analysis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Investigations on solid state rechargeable magnesium batteries are considered important similar to lithium batteries. In view of negligible hazards and less reactivity of the magnesium, in comparison with lithium, studies on rechargeable magnesium batteries are expected to have a wide scope in future. Solid polymer electrolytes, which conduct Mg2+ ions and reversibility of a Mg/Mg2+ couple are essential components of the studies. In the present investigations, the existence of reversibility of a Mg/Mg2+ couple in a gel polymer electrolyte (GPE) medium is established for the first time in literature. Results obtained by electrochemical impedance spectroscopy and cyclic voltammetry on Mg/GPE/Mg, SS/GPE/SS symmetrical cells show evidence for the reversibility. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (epsilon(rn)/epsilon(rp)) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be -23 muC/m(2)K and -71 muC/m(2)K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.