896 resultados para Electrochemical capacitance spectroscopy
Resumo:
Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance-voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 X 10(21) cm(-3), indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.
Resumo:
The Raman scattering study of vibrational modes and hole concentration in a ferromagnetic semiconductor Ga1-xMnxSb grown by Mn ion implantation, deposition and post-annealing has been presented. The experiments are performed both in implanted and unimplanted regions before and after etching the samples. The Raman spectra measured from the unimplanted region show only GaSb-like phonon modes. On the other hand, the spectra measured from the implanted region show additional phonon modes approximately at 115, 152, 269, 437 and 659 cm(-1). The experimental results demonstrate that the extra modes are associated with surface defects, crystal disorder and blackish layer that is formed due to Mn ion implantation, deposition and annealing processes. Furthermore, we have determined the hole concentration as a function of laser probing position by modeling the Raman spectra using coupled mode theory. The contributions of GaSb-like phonon modes and coupled LO-phonon plasmon mode are taken into consideration in the model. The hole-concentration-dependent CLOPM is resolved in the spectra measured from the implanted and nearby implanted regions. The hole concentrations determined by Raman scattering are found to be in good agreement with those measured by the electrochemical capacitance-voltage technique.
Resumo:
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l(-1)) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l(-1) BTA and 2 g l(-1) SP showed optimum enhanced inhibition compared with their individual effects.
Resumo:
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.
Resumo:
Tunneling escape of electrons from quantum wells (QWs) has systematically been studied in an arbitrarily multilayered heterostructures, both theoretically and experimentally. A wave packet method is developed to calculate the bias dependence of tunneling escape time (TET) in a three-barrier, two-well structure. Moreover, by considering the time variation of the band-edge profile in the escape transient, arising from the decay of injected electrons in QWs, we demonstrate that the actual escape time of certain amount of charge from QWs, instead of single electron, could be much longer than that for a single electron, say, by two orders of magnitude at resonance. The broadening of resonance may also be expected from the same mechanism before invoking various inhomogeneous and homogeneous broadening. To perform a close comparison between theory and experiment, we have developed a new method to measure TET by monitoring transient current response (TCR), stemming from tunneling escape of electrons out of QWs in a similar heterostructure. The time resolution achieved by this new method reaches to several tens ns, nearly three orders of magnitude faster than that by previous transient-capacitance spectroscopy (TCS). The measured TET shows an U-shaped, nonmonotonic dependence on bias, unambiguously indicating resonant tunneling escape of electrons from an emitter well through the DBRTS in the down-stream direction. The minimum value of TET obtained at resonance is accordance with charging effect and its time variation of injected electrons. A close comparison with the theory has been made to imply that the dynamic build-up of electrons in DBRTS might play an important role for a greatly suppressed tunneling escape rate in the vicinity of resonance.
Resumo:
By considering the time variation of band-edge profile arising from the decay of injected charge in quantum wells(QWs), we employ a wave packet method to verify that the actual escape time of certain amount of electrons from QWs could be much larger than that for a single electron. The theoretical result is also in agreement with our measurement of escape time, performed by using a newly developed method--transient current response.
Resumo:
Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.
Resumo:
Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.
Resumo:
Palladium nanoparticle-loaded carbon nanofibers (Pd/CNFs) were synthesized by the combination of electrospinning and thermal treatment processes. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that spherical Pd nanoparticles (NPs) are well-dispersed on the surfaces of CNFs or embedded in CNFs. X-ray diffraction (XRD) pattern indicates that cubic phase of Pd was formed during the reduction and carbonization processes, and the presence of Pd NPs promoted the graphitization of CNFs. This nanocomposite material exhibited high electric conductivity and accelerated the electron transfer, as verified by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).
Resumo:
A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers; labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers; tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged signal-aptamer sandwich type was formed.
Resumo:
A facile phospholipid/room-temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV-vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film.
Resumo:
Horseradish peroxidase (HRP) was incorporated into multiwalled carbon nanotube/thionine/Au (MTAu) composite film by electrostatic interactions between positively charged HRP and negatively charged MTAu composite. The results of electrochemical impedance spectroscopy (EIS) confirmed adsorption of HRP on the surface of MTAu modified GC electrode.
Resumo:
A label-free and highly sensitive impedimetric aptasensor based on a polyamidoamine dendrimer modified gold electrode was developed for the determination of thrombin. Amino-terminated polyamidoamine dendrimer was firstly covalently attached to the cysteine functionalized gold electrode through glutaraldehyde coupling. Subsequently, the dendrimer was activated with glutaraldehyde, and amino-modified thrombin aptamer probe was immobilized onto the activated dendrimer monolayer film. The layer-by-layer assembly process was traced by surface plasmon resonance and electrochemical impedance spectroscopy.
Resumo:
A novel [Ru(bpy)(2) (dcbpy)NHS] labeling/aptamer-based biosensor combined with gold nanoparticle amplification for the determination of lysozyme with an electrochemiluminescence (ECL) method is presented. In this work, an aptamer, an ECL probe, gold nanoparticle amplification, and competition assay are the main protocols employed in ECL detection. With all the protocols used, an original biosensor coupled with an aptamer and [Ru(bpy)(2)(dcbpy)NHS] has been prepared. Its high selectivity and sensitivity are the main advantages over other traditional [Ru(bpy)(3)](2+) biosensors. The electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) characterization illustrate that this biosensor is fabricated successfully. Finally, the biosensor was applied to a displacement assay in different concentrations of lysozyme solution, and an ultrasensitive ECL signal was obtained. The ECL intensity decreased proportionally to the lysozyme concentration over the range 1.0 x 10-(13)-1.0 x 10(-8) mol L-1 with a detection limit of 1.0 x 10(-13) mol L-1.
Resumo:
Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).