985 resultados para Electrical signal
Resumo:
The canonical representation of speech constitutes a perfect reconstruction (PR) analysis-synthesis system. Its parameters are the autoregressive (AR) model coefficients, the pitch period and the voiced and unvoiced components of the excitation represented as transform coefficients. Each set of parameters may be operated on independently. A time-frequency unvoiced excitation (TFUNEX) model is proposed that has high time resolution and selective frequency resolution. Improved time-frequency fit is obtained by using for antialiasing cancellation the clustering of pitch-synchronous transform tracks defined in the modulation transform domain. The TFUNEX model delivers high-quality speech while compressing the unvoiced excitation representation about 13 times over its raw transform coefficient representation for wideband speech.
Resumo:
This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single- gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 mu m SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation.
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
Controlling the surface properties of nanoparticles using ionic dopants prone to be surface segregated has emerged as an interesting tool for obtaining highly selective and sensitive sensors. In this work, the surface segregation of Cd cations on SnO2 nanopowders prepared by the Pechini`s method was studied by infrared spectroscopy, X-ray diffraction, and specific surface area analysis. We observed that the surface chemistry modifications caused by the surface segregation of Cd and the large specific surface area were closely responsible for a rapid and regular electrical response of 5 mol% Cd-doped SnO2 films to 100 ppm propane and NO, diluted in dry air at relatively low temperature (100 degrees C). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
As is well known, Hessian-based adaptive filters (such as the recursive-least squares algorithm (RLS) for supervised adaptive filtering, or the Shalvi-Weinstein algorithm (SWA) for blind equalization) converge much faster than gradient-based algorithms [such as the least-mean-squares algorithm (LMS) or the constant-modulus algorithm (CMA)]. However, when the problem is tracking a time-variant filter, the issue is not so clear-cut: there are environments for which each family presents better performance. Given this, we propose the use of a convex combination of algorithms of different families to obtain an algorithm with superior tracking capability. We show the potential of this combination and provide a unified theoretical model for the steady-state excess mean-square error for convex combinations of gradient- and Hessian-based algorithms, assuming a random-walk model for the parameter variations. The proposed model is valid for algorithms of the same or different families, and for supervised (LMS and RLS) or blind (CMA and SWA) algorithms.
Resumo:
Starting from the Durbin algorithm in polynomial space with an inner product defined by the signal autocorrelation matrix, an isometric transformation is defined that maps this vector space into another one where the Levinson algorithm is performed. Alternatively, for iterative algorithms such as discrete all-pole (DAP), an efficient implementation of a Gohberg-Semencul (GS) relation is developed for the inversion of the autocorrelation matrix which considers its centrosymmetry. In the solution of the autocorrelation equations, the Levinson algorithm is found to be less complex operationally than the procedures based on GS inversion for up to a minimum of five iterations at various linear prediction (LP) orders.
Resumo:
This paper analyzes the convergence of the constant modulus algorithm (CMA) in a decision feedback equalizer using only a feedback filter. Several works had already observed that the CMA presented a better performance than decision directed algorithm in the adaptation of the decision feedback equalizer, but theoretical analysis always showed to be difficult specially due to the analytical difficulties presented by the constant modulus criterion. In this paper, we surmount such obstacle by using a recent result concerning the CM analysis, first obtained in a linear finite impulse response context with the objective of comparing its solutions to the ones obtained through the Wiener criterion. The theoretical analysis presented here confirms the robustness of the CMA when applied to the adaptation of the decision feedback equalizer and also defines a class of channels for which the algorithm will suffer from ill-convergence when initialized at the origin.
Resumo:
Chaotic signals have been considered potentially attractive in many signal processing applications ranging from wideband communication systems to cryptography and watermarking. Besides, some devices as nonlinear adaptive filters and phase-locked loops can present chaotic behavior. In this paper, we derive analytical expressions for the autocorrelation sequence, power spectral density and essential bandwidth of chaotic signals generated by the skew tent map. From these results, we suggest possible applications in communication systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Electromagnetic suspension systems are inherently nonlinear and often face hardware limitation when digitally controlled. The main contributions of this paper are: the design of a nonlinear H(infinity) controller. including dynamic weighting functions, applied to a large gap electromagnetic suspension system and the presentation of a procedure to implement this controller on a fixed-point DSP, through a methodology able to translate a floating-point algorithm into a fixed-point algorithm by using l(infinity) norm minimization due to conversion error. Experimental results are also presented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Phase-locked loops (PLLs) are widely used in applications related to control systems and telecommunication networks. Here we show that a single-chain master-slave network of third-order PLLs can exhibit stationary, periodic and chaotic behaviors, when the value of a single parameter is varied. Hopf, period-doubling and saddle-saddle bifurcations are found. Chaos appears in dissipative and non-dissipative conditions. Thus, chaotic behaviors with distinct dynamical features can be generated. A way of encoding binary messages using such a chaos-based communication system is suggested. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We use networks composed of three phase-locked loops (PLLs), where one of them is the master, for recognizing noisy images. The values of the coupling weights among the PLLs control the noise level which does not affect the successful identification of the input image. Analytical results and numerical tests are presented concerning the scheme performance. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The most popular algorithms for blind equalization are the constant-modulus algorithm (CMA) and the Shalvi-Weinstein algorithm (SWA). It is well-known that SWA presents a higher convergence rate than CMA. at the expense of higher computational complexity. If the forgetting factor is not sufficiently close to one, if the initialization is distant from the optimal solution, or if the signal-to-noise ratio is low, SWA can converge to undesirable local minima or even diverge. In this paper, we show that divergence can be caused by an inconsistency in the nonlinear estimate of the transmitted signal. or (when the algorithm is implemented in finite precision) by the loss of positiveness of the estimate of the autocorrelation matrix, or by a combination of both. In order to avoid the first cause of divergence, we propose a dual-mode SWA. In the first mode of operation. the new algorithm works as SWA; in the second mode, it rejects inconsistent estimates of the transmitted signal. Assuming the persistence of excitation condition, we present a deterministic stability analysis of the new algorithm. To avoid the second cause of divergence, we propose a dual-mode lattice SWA, which is stable even in finite-precision arithmetic, and has a computational complexity that increases linearly with the number of adjustable equalizer coefficients. The good performance of the proposed algorithms is confirmed through numerical simulations.
Resumo:
Due to the broadband characteristic of chaotic signals, many of the methods that have been proposed for synchronizing chaotic systems do not usually present a satisfactory performance when applied to bandlimited communication channels. Here, the effects of bandwidth limitations imposed by the channel on the synchronous solution of a discrete-time chaotic master-slave network are investigated. The discrete-time system considered in this study is the Henon map. It is analytically shown that synchronism can be achieved in such a network by introducing a digital filter in the feedback loop responsible for generating the chaotic signal that will be sent to the slave node. Numerical simulations relating the filter parameters, such as its order and cut-off frequency, to the maximum Lyapunov exponent of the master node, which determines if the transmitted signal is chaotic or not, are also presented. These results can be useful for practical communication schemes based on chaos.
Resumo:
This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.