989 resultados para Electrical Engineering
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).
Resumo:
The Lingodroids are a pair of mobile robots that evolve a language for places and relationships between places (based on distance and direction). Each robot in these studies has its own understanding of the layout of the world, based on its unique experiences and exploration of the environment. Despite having different internal representations of the world, the robots are able to develop a common lexicon for places, and then use simple sentences to explain and understand relationships between places even places that they could not physically experience, such as areas behind closed doors. By learning the language, the robots are able to develop representations for places that are inaccessible to them, and later, when the doors are opened, use those representations to perform goal-directed behavior.
Resumo:
This paper is directed towards providing an answer to the question, ”Can you control the trajectory of a Lagrangian float?” Being a float that has minimal actuation (only buoyancy control), their horizontal trajectory is dictated through drifting with ocean currents. However, with the appropriate vertical actuation and utilising spatio-temporal variations in water speed and direction, we show here that broad controllabilty results can be met such as waypoint following to keep a float inside of a bay or out of a designated region. This paper extends theory experimen- tally evaluted on horizontally actuated Autonomous Underwater Vehicles (AUVs) for trajectory control utilising ocean forecast models and presents an initial investi- gation into the controllability of these minimally actuated drifting AUVs. Simulated results for offshore coastal and within highly dynamic tidal bays illustrate two tech- niques with the promise for an affirmative answer to the posed question above.
Resumo:
Autonomous guidance of agricultural vehiclesis vital as mechanized farming production becomes more prevalent. It is crucial that tractor-trailers are guided with accuracy in both lateral and longitudinal directions, whilst being affected by large disturbance forces, or slips, owing to uncertain and undulating terrain. Successful research has been concentrated on trajectory control which can provide longitudinal and lateral accuracy if the vehicle moves without sliding, and the trailer is passive. In this paper, the problem of robust trajectory tracking along straight and circular paths of a tractor-steerable trailer is addressed. By utilizing a robust combination of backstepping and nonlinear PI control, a robust, nonlinear controller is proposed. For vehicles subjected to sliding, the proposed controller makes the lateral deviations and the orientation errors of the tractor and trailer converge to a neighborhood near the origin. Simulation results are presented to illustrate that the suggested controller ensures precise trajectory tracking in the presence of slip.
Resumo:
Bystander is a multi-user, immersive, interactive environment intended for public display in a museum or art gallery. It is designed to make available heritage collections in novel and culturally responsible ways. We use its development as a case study to examine the role played in that process by a range of tools and techniques from participatory design traditions. We describe how different tools were used within the design process, specifically: the ways in which the potential audience members were both included and represented; the prototypes that have been constructed as a way of envisioning how the final work might be experienced; and how these tools have been brought together in ongoing designing and evaluation. We close the paper with some reflections on the extension of participatory commitments into still-emerging areas of technology design that prioritise the design of spaces for human experience and reflective interaction.
Resumo:
From location-aware computing to mining the social web, representations of context have promised to make better software applications. The opportunities and challenges of context-aware computing from representational, situated and interactional perspectives have been well documented, but arguments from the perspective of design are somewhat disparate. This paper draws on both theoretical perspectives and a design framing, using the problem of designing a social mobile agile ridesharing system, in order to reflect upon and call for broader design approaches for context-aware computing and human-computer Interaction research in general.
Resumo:
A novel m-ary tree based approach is presented to solve asset management decisions which are combinatorial in nature. The approach introduces a new dynamic constraint based control mechanism which is capable of excluding infeasible solutions from the solution space. The approach also provides a solution to the challenges with ordering of assets decisions.
Resumo:
This paper presents a general, global approach to the problem of robot exploration, utilizing a topological data structure to guide an underlying Simultaneous Localization and Mapping (SLAM) process. A Gap Navigation Tree (GNT) is used to motivate global target selection and occluded regions of the environment (called “gaps”) are tracked probabilistically. The process of map construction and the motion of the vehicle alters both the shape and location of these regions. The use of online mapping is shown to reduce the difficulties in implementing the GNT.
Resumo:
The Link the Wiki track at INEX 2008 offered two tasks, file-to-file link discovery and anchor-to-BEP link discovery. In the former 6600 topics were used and in the latter 50 were used. Manual assessment of the anchor-to-BEP runs was performed using a tool developed for the purpose. Runs were evaluated using standard precision & recall measures such as MAP and precision / recall graphs. 10 groups participated and the approaches they took are discussed. Final evaluation results for all runs are presented.
Resumo:
Trusted health care outcomes are patient centric. Requirements to ensure both the quality and sharing of patients’ health records are a key for better clinical decision making. In the context of maintaining quality health, the sharing of data and information between professionals and patients is paramount. This information sharing is a challenge and costly if patients’ trust and institutional accountability are not established. Establishment of an Information Accountability Framework (IAF) is one of the approaches in this paper. The concept behind the IAF requirements are: transparent responsibilities, relevance of the information being used, and the establishment and evidence of accountability that all lead to the desired outcome of a Trusted Health Care System. Upon completion of this IAF framework the trust component between the public and professionals will be constructed. Preservation of the confidentiality and integrity of patients’ information will lead to trusted health care outcomes.
Resumo:
This paper presents the design and implementation of a microstrip to parallel strip balun which are frequently used as balanced antennas feed. This wideband balun transition is composed of a parallel strip which is connected to the spiral antenna and a microstrip line where the width of the ground plane is gradually reduced to eventually resemble the parallel strip. The taper accomplishes the mode and impedance transformation. This balun has significantly improved bandwidth characteristics. The entire circuit was fabricated on RT Duriod 5880 substrate. The circuit designs were simulated and optimised using CST Microwave Studio and the simulated results are compared with the measured results. The back-to-back microstrip to parallel strip has a return loss of better than 10 dB over a wide bandwidth from 1.75 to 15 GHz. The performance of the proposed balun was validated with the spiral antenna. The measured results were compared with the simulated results and it shows that the antenna operates well in wideband frequency range from 2.5 to 15 GHz.
Resumo:
In this paper we analyze the performance degradation of slotted amplify-and-forward protocol in wireless environments with high node density where the number of relays grows asymptotically large. Channel gains between source-destination pairs in such networks can no longer be independent. We analyze the degradation of performance in such wireless environments where channel gains are exponentially correlated by looking at the capacity per channel use. Theoretical results for eigenvalue distribution and the capacity are derived and compared with the simulation results. Both analytical and simulated results show that the capacity given by the asymptotic mutual information decreases with the network density.
Resumo:
This paper is about planning paths from overhead imagery, the novelty of which is taking explicit account of uncertainty in terrain classification and spatial variation in terrain cost. The image is first classified using a multi-class Gaussian Process Classifier which provides probabilities of class membership at each location in the image. The probability of class membership at a particular grid location is then combined with a terrain cost evaluated at that location using a spatial Gaussian process. The resulting cost function is, in turn, passed to a planner. This allows both the uncertainty in terrain classification and spatial variations in terrain costs to be incorporated into the planned path. Because the cost of traversing a grid cell is now a probability density rather than a single scalar value, we can produce not only the most-likely shortest path between points on the map, but also sample from the cost map to produce a distribution of paths between the points. Results are shown in the form of planned paths over aerial maps, these paths are shown to vary in response to local variations in terrain cost.
Resumo:
In this paper, we examine the use of a Kalman filter to aid in the mission planning process for autonomous gliders. Given a set of waypoints defining the planned mission and a prediction of the ocean currents from a regional ocean model, we present an approach to determine the best, constant, time interval at which the glider should surface to maintain a prescribed tracking error, and minimizing time on the ocean surface. We assume basic parameters for the execution of a given mission, and provide the results of the Kalman filter mission planning approach. These results are compared with previous executions of the given mission scenario.
Resumo:
We present an iterative hierarchical algorithm for multi-view stereo. The algorithm attempts to utilise as much contextual information as is available to compute highly accurate and robust depth maps. There are three novel aspects to the approach: 1) firstly we incrementally improve the depth fidelity as the algorithm progresses through the image pyramid; 2) secondly we show how to incorporate visual hull information (when available) to constrain depth searches; and 3) we show how to simultaneously enforce the consistency of the depth-map by continual comparison with neighbouring depth-maps. We show that this approach produces highly accurate depth-maps and, since it is essentially a local method, is both extremely fast and simple to implement.