953 resultados para Electric automobiles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex nature of the structural disorder in the lead-free ferroelectric Na1/2Bi1/2TiO3 has a profound impact on the perceived global structure and polar properties. In this paper, we have investigated the effect of electric field and temperature on the local structure around theBi and Ti atoms using extended x-ray absorption fine structure. Detailed analysis revealed that poling brings about a noticeable change in the bond distances associated with the Bi-coordination sphere, whereas the Ti coordination remains unaffected. We also observed discontinuity in the Bi-O bond lengths across the depolarization temperature of the poled specimen. These results establish that the disappearance of the monoclinic-like (Cc) global distortion, along with the drastic suppression of the short-ranged in-phase octahedral tilt after poling B. N. Rao et al., Phys. Rev. B 88, 224103 (2013)] is a result of the readjustment of theA-O bonds by the electric field, so as to be in conformity with the rhombohedral R3c structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article contains electromechanical analysis of a piezoelectric bimorph actuator at high electric field by incorporating second-order constitutive equations of piezoelectric material. Tip deflection, block force, block moment, block load, output strain energy, output energy density, input electrical energy, and energy efficiency are analytically derived for the actuator at high electric field. The analysis shows that output energy and energy density increase more rapidly at high electric field, compared to the prediction by the linear model. The analysis shows energy efficiency depends on electric field. Some analytical results are validated with the published experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene difluoride), a well-known candidate for artificial muscle patch applications is a semi-crystalline polymer with a host of attributes such as piezo- and pyroelectricity, polymorphism along with low dielectric constant and stiffness. The present work explores the unique interplay among the factors (conductivity, polymorphism and electrical stimulation) towards cell proliferation on poly(vinylidene difluoride) (PVDF)-based composites. In this regard, multi-walled carbon nanotubes (MWNTs) are introduced in the PVDF matrix (limited to 2%) through melt mixing to increase the conductivity of PVDF. The addition of MWNTs also led to an increase in the fraction of piezoelectric beta-phase, tensile strength and modulus. The melting and crystallization behaviour of PVDF-MWNT together with FT-IR confirms that the crystallization is found to be aided by the presence of MWNT. The conducting PVDF-MWNTs are used as substrates for the growth of C2C12 mouse myoblast cells and electrical stimulation with a range of field strengths (0-2 V cm(-1)) is intermittently delivered to the cells in culture. The cell viability results suggest that metabolically active cell numbers can statistically increase with electric stimulation up to 1 V cm(-1), only on the PVDF + 2% MWNT. Summarising, the current study highlights the importance of biophysical cues on cellular function at the cell-substrate interface. This study further opens up new avenues in designing conducting substrates, that can be utilized for enhancing cell viability and proliferation and also reconfirms the lack of toxicity of MWNTs, when added in a tailored manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bangalore Metropolitan Transport Corporation (BMTC) took an initiative to check the overall benefits of introducing electric buses as a suitable replacement for the diesel buses to tackle the burgeoning pollution in the city of Bengaluru, India. For a trial run of three months, an electric bus was procured from a Chinese company `Build Your Dreams' (BYD). Data were collected by BMTC on the operation and maintenance of the bus. This new initiative, if rightly guided, could have a direct impact on the lives of those in the city. An economic analysis of the running as well as maintenance of the electric buses within the city limits was performed. For comparison, the same analysis was performed for the data from the existing diesel bus operating on the same route. On the basis of the study, it can be concluded that the introduction of electric buses as a means of public transport in the city would be beneficial both economically as well as environmentally. The electric bus also makes much less noise, thereby helping reduce noise pollution and makes less vibration when compared to the diesel bus. This results in a more comfortable journey for the passengers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3+ ion by electric field on a model system Eu-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3- based lead-free piezoelectrics exhibiting giant piezostrain are technologically interesting materials for actuator applications. The lack of clarity with regard to the structure of the nonpolar phase of this system has hindered the understanding of the structural mechanism associated with the giant piezostrain and other related phenomena. In this paper, we have investigated the structure and field-induced phase transformation behavior of a model system (0.94 - x) Na0.5Bi0.5TiO3-0.06BaTiO(3)-xK(0.5)Na(0.5)NbO(3) (0.0 <= x <= 0.025). A detailed structural analysis using neutron powder diffraction revealed that the nonpolar phase is neither cubic nor a mixture of rhombohedral (R3c) and tetragonal (P4bm) phases as commonly reported in literature but exhibits a long-period modulated structure, which is most probably of the type root 2 x root 2 x n with n = 16. Our results suggest that the giant piezoelectric strain is associated with a field-induced phase transformation of the long-period modulated structure to rhombohedral R3c structure above a critical field. We also demonstrate that the giant piezostrain is lost if the system retains a fraction of the field-induced R3c phase. A possible correlation among depolarization temperature, giant piezostrain, and its electrical fatigue behavior has also been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a fully anisotropic analysis of strip electric saturation model proposed by Gao et al. (1997) (Gao, H.J., Zhang, T.Y., Tong, P., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids, 45, 491-510) for piezoelectric materials. The relationship between the size of the strip saturation zone ahead of a crack tip and the applied electric displacement field is established. It is revealed that the critical fracture stresses for a crack perpendicular to the poling axis is linearly decreased with the increase of the positive applied electric field and increases linearly with the increase of the negative applied electric field. For a crack parallel to the poring axis, the failure stress is not effected by the parallel applied electric field. In order to analyse the existed experimental results, the stress fields ahead of the tip of an elliptic notch in an infinite piezoelectric solid are calculated. The critical maximum stress criterion is adopted for determining the fracture stresses under different remote electric displacement fields. The present analysis indicates that the crack initiation and propagation from the tip of a sharp elliptic notch could be aided or impeded by an electric displacement field depending on the field direction. The fracture stress predicted by the present analysis is consistent with the experimental data given by Park and Sun (1995) (Park, S., Sun, C.T., 1995. Fracture criteria for piezoelectric materials. J. Am. Ceram. Soc 78, 1475-1480).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a single optical photon source for quantum cryptography based on the acousto-electric effect. Surface acoustic waves (SAWs) propagating through a quasi-one-dimensional channel have been shown to produce packets of electrons which reside in the SAW minima and travel at the velocity of sound. In our scheme these electron packets are injected into a p-type region, resulting in photon emission. Since the number of electrons in each packet can be controlled down to a single electron, a stream of single (or N) photon states, with a creation time strongly correlated with the driving acoustic field, should be generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a novel approach to the design and fabrication of a high temperature inverter module for hybrid electrical vehicles is presented. Firstly, SiC power electronic devices are considered in place of the conventional Si devices. Use of SiC raises the maximum practical operating junction temperature to well over 200°C, giving much greater thermal headroom between the chips and the coolant. In the first fabrication, a SiC Schottky barrier diode (SBD) replaces the Si pin diode and is paired with a Si-IGBT. Secondly, double-sided cooling is employed, in which the semiconductor chips are sandwiched between two substrate tiles. The tiles provide electrical connections to the top and the bottom of the chips, thus replacing the conventional wire bonded interconnect. Each tile assembly supports two IGBTs and two SBDs in a half-bridge configuration. Both sides of the assembly are cooled directly using a high-performance liquid impingement system. Specific features of the design ensure that thermo-mechanical stresses are controlled so as to achieve long thermal cycling life. A prototype 10 kW inverter module is described incorporating three half-bridge sandwich assemblies, gate drives, dc-link capacitance and two heat-exchangers. This achieves a volumetric power density of 30W/cm3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an analytical approach that is generalized for the design of various types of electric machines based on a physical magnetic circuit model. Conventional approaches have been used to predict the behavior of electric machines but have limitations in accurate flux saturation analysis and hence machine dimensioning at the initial design stage. In particular, magnetic saturation is generally ignored or compensated by correction factors in simplified models since it is difficult to determine the flux in each stator tooth for machines with any slot-pole combinations. In this paper, the flux produced by stator winding currents can be calculated accurately and rapidly for each stator tooth using the developed model, taking saturation into account. This aids machine dimensioning without the need for a computationally expensive finite element analysis (FEA). A 48-slot machine operated in induction and doubly-fed modes is used to demonstrate the proposed model. FEA is employed for verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many experimental observations have shown that a single domain in a ferroelectric material switches by progressive movement of domain walls, driven by a combination of electric field and stress. The mechanism of the domain switch involves the following steps: initially, the domain has a uniform spontaneous polarization; new domains with the reverse polarization direction nucleate, mainly at the surface, and grow though the crystal thickness; the new domain expands sideways as a new domain continues to form; finally, the domain switch coalesces to complete the polarization reversal. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of the ferroelectric material and used to study the nonlinear constitutive behavior of a ferroelectric body in this paper. The principle of stationary total potential energy is put forward in which the basic unknown quantities are the displacement u(i), electric displacement D-i and volume fraction rho(I) of the domain switching for the variant I. The mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total potential energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion established by Hwang et al. [ 1]. Based on the domain switching criterion, a set of linear algebraic equations for determining the volume fraction rho(I) of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. If the volume fraction rho(I) of domain switching for each domain is prescribed, the unknown displacement and electric potential can be obtained based on the conventional finite element procedure. It is assumed that a domain switches if the reduction in potential energy exceeds a critical energy barrier. According to the experimental results, the energy barrier will strengthen when the volume fraction of the domain switching increases. The external mechanical and electric loads are increased step by step. The volume fraction rho(I) of domain switching for each element obtained from the last loading step is used as input to the constitutive equations. Then the strain and electric fields are calculated based on the conventional finite element procedure. The finite element analysis is carried out on the specimens subjected to uniaxial coupling stress and electric field. Numerical results and available experimental data are compared and discussed. The present theoretic prediction agrees reasonably with the experimental results.