985 resultados para Effector T cells
Resumo:
The effector response of natural killer (NK) cells is determined by opposing signals received through activating and inhibitory receptors. A process termed NK cell education, which is guided by the recognition of Major Histocompatibility Complex class I (MHC-I) molecules, determines how efficiently activating receptors respond to stimulation. This ensures NK cell tolerance to healthy tissues while allowing robust responses to diseased host cells. It was thought that NK cells are educated during their development in the bone marrow and that education fixes the NK cells' functional properties. However, recent findings suggest that the function of mature peripheral NK cells can adapt to changes in their environment and that the persistent exposure to normal-self is essential to maintain NK cell reactivity. Notwithstanding, NK cell stimulation in the context of inflammation can stably improve the functional properties of NK cells.
Resumo:
Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.
Resumo:
To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.
Resumo:
PURPOSE: Vaccines targeting tumor associated antigens are in development for bladder cancer. Most of these cancers are nonmuscle invasive at diagnosis and confined in the mucosa and submucosa. However, to our knowledge how vaccination may induce the regression of tumors at such mucosal sites has not been examined previously. We compared different immunization routes for the ability to induce vaccine specific antitumor CD8 T cells in the bladder and bladder tumor regression in mice. MATERIALS AND METHODS: In the absence of a murine bladder tumor model expressing a tumor antigen relevant for human use we established an orthotopic model expressing the HPV-16 tumor antigen E7 as a model. We used an adjuvant E7 polypeptide to induce CD8 T cell mediated tumor regression. RESULTS: Subcutaneous and intravaginal but not intranasal vaccination induced a high number of TetE7(+)CD8(+) T cells in the bladder as well as bladder tumor regression. The entry of vaccine specific T cells in the bladder was not the only key since persistent regression of established bladder tumors by intravaginal or subcutaneous immunization was associated with tumor infiltration of total CD4 and CD8 T cells. This resulted in an increase in TetE7(+)CD8(+) T cells and a decrease in T regulatory cells, leading to an increased number of effector interferon-γ secreting vaccine specific CD8 T cells in the regressing bladder tumor. CONCLUSIONS: These data show that immunization routes should be tailored to each mucosal tumor site. Subcutaneous or intravaginal vaccination may be of additional value to treat patients with bladder cancer.
Resumo:
UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon–intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua–UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua–UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua–UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua–UEV protein confers new biological properties to this regulator of variant polyubiquitination.[Kua cDNAs isolated by RT-PCR and described in this paper have been deposited in the GenBank data library under accession nos. AF1155120 (H. sapiens) and AF152361 (D. melanogaster). Genomic clones containing UEV genes: S. cerevisiae, YGL087c (accession no. Z72609); S. pombe, c338 (accession no. AL023781); P. falciparum, MAL3P2 (accession no. AL034558); A. thaliana, F26F24 (accession no. AC005292); C. elegans, F39B2 (accession no. Z92834); D. melanogaster, AC014908; and H. sapiens, 1185N5 (accession no. AL034423). Accession numbers for Kua cDNAs in GenBank dbEST: M. musculus, AA7853; T. cruzi, AI612534. Other Kua-containing sequences: A. thaliana genomic clones F10M23 (accession no. AL035440), F19K23 (accession no. AC000375), and T20K9 (accession no. AC004786).
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
Adoptive transfer of autologous or allogenic T cells to patients is being used with increased frequency as a therapy for infectious diseases and cancer. However, many questions remain with regard to defining optimized procedures for preparation and selection of T cell populations for transfer. In a new study in this issue of the JCI, Gattinoni and colleagues used a TCR transgenic mouse model to examine in vitro-generated tumor antigen-specific CD8+ T cells at various stages of differentiation for their efficacy in adoptive immunotherapy against transplantable melanoma. The results confirm that CD8+ T cells progressively lose immunocompetence with prolonged in vitro cultivation and suggest that effector CD8+ T cells alone may be considerably less potent at protecting hosts with advanced tumors than are less differentiated T cells.
Resumo:
The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA(+)CCR7(-) that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA(-)CCR7(+) or CD45RA(-)CCR7(-) CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA(-)CCR7(+), CD45RA(-)CCR7(-) and CD45RA(+)CCR7(-) CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA(-)CCR7(+) response was typical of central memory (T(CM)) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA(-)CCR7(-) response of effector memory (T(EM)) IFN-gamma-secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-gamma-secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed "exhaustion." Expression of inhibitory Receptors (iRs) is often regarded as a hallmark of "exhaustion." Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160, and KLRG1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term ("chronic") antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking up-regulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs) of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.
Resumo:
Dendritic cells (DCs) are leukocytes specialised in the uptake, processing, and presentation of antigen and fundamental in regulating both innate and adaptive immune functions. They are mainly localised at the interface between body surfaces and the environment, continuously scrutinising incoming antigen for the potential threat it may represent to the organism. In the respiratory tract, DCs constitute a tightly enmeshed network, with the most prominent populations localised in the epithelium of the conducting airways and lung parenchyma. Their unique localisation enables them to continuously assess inhaled antigen, either inducing tolerance to inoffensive substances, or initiating immunity against a potentially harmful pathogen. This immunological homeostasis requires stringent control mechanisms to protect the vital and fragile gaseous exchange barrier from unrestrained and damaging inflammation, or an exaggerated immune response to an innocuous allergen, such as in allergic asthma. During DC activation, there is upregulation of co-stimulatory molecules and maturation markers, enabling DC to activate naïve T cells. This activation is accompanied by chemokine and cytokine release that not only serves to amplify innate immune response, but also determines the type of effector T cell population generated. An increasing body of recent literature provides evidence that different DC subpopulations, such as myeloid DC (mDC) and plasmacytoid DC (pDC) in the lungs occupy a key position at the crossroads between tolerance and immunity. This review aims to provide the clinician and researcher with a summary of the latest insights into DC-mediated pulmonary immune regulation and its relevance for developing novel therapeutic strategies for various disease conditions such as infection, asthma, COPD, and fibrotic lung disease.
Resumo:
In conditions of T lymphopenia, interleukin (IL) 7 levels rise and, via T cell receptor for antigen-self-major histocompatibility complex (MHC) interaction, induce residual naive T cells to proliferate. This pattern of lymphopenia-induced "homeostatic" proliferation is typically quite slow and causes a gradual increase in total T cell numbers and differentiation into cells with features of memory cells. In contrast, we describe a novel form of homeostatic proliferation that occurs when naive T cells encounter raised levels of IL-2 and IL-15 in vivo. In this situation, CD8(+) T cells undergo massive expansion and rapid differentiation into effector cells, thus closely resembling the T cell response to foreign antigens. However, the responses induced by IL-2/IL-15 are not seen in MHC-deficient hosts, implying that the responses are driven by self-ligands. Hence, homeostatic proliferation of naive T cells can be either slow or fast, with the quality of the response to self being dictated by the particular cytokine (IL-7 vs. IL-2/IL-15) concerned. The relevance of the data to the gradual transition of naive T cells into memory-phenotype (MP) cells with age is discussed.
Resumo:
The clinical relevance of dendritic cells (DCs) at the tumor site remains a matter of debate concerning their role in the generation of effective antitumor immunity in human cancers. We performed a comprehensive immunohistochemical analysis using a panel of DC-specific antibodies on regressing tumor lesions and sentinel lymph nodes (SLNs) in melanoma patients. Here we show in a case report involving spontaneous regression of metastatic melanoma that the accumulation of DC-Lamp+ DCs, clustered with tumor cells and lymphocytes, is associated with local expansion of antigen-specific memory effector CTLs. These findings were extended in a series of 19 melanoma-positive SLNs and demonstrated a significant correlation between the density of DC-Lamp+ DC infiltrates in SLNs with the absence of metastasis in downstream lymph nodes. This study, albeit performed in a limited series of patients, points to a pivotal role of mature DCs in the local expansion of efficient antitumor T-cell-mediated immune responses at the initial sites of metastasis and may have important implications regarding the prognosis, staging, and immunotherapy of melanoma patients.
Resumo:
Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.
Resumo:
SUMMARYThe incidence of type 2 diabetes (T2D) is increasing worldwide and is linked to the enhancement of obesity. The principal cause of T2D development is insulin resistance, which lead to the increase of insulin production by the pancreatic beta-cells. In a pathological environment, namely dyslipidaemia, hyperglycaemia and inflammation, beta-cell compensation will fail in more vulnerable cells and diabetes will occur. High Density Lipoproteins (HDLs), commonly named "good cholesterol" are known to be atheroprotective. Low levels of HDLs are associated with increased prevalence of cardiovascular disease but are also an independent risk factor for the development of T2D. HDLs were demonstrated to protect pancreatic beta-cells against several stresses. However the molecular mechanisms of the protection are unknown and the objectives of this work were to try to elucidate the way how HDLs protect. The first approach was a broad screening of genes regulated by the stress and HDLs. A microarray analysis was performed on beta-cells stressed by serum deprivation and rescued by HDLs. Among the genes regulated, we focused on 4E-BP1, a cap-dependent translational inhibitor. In addition, HDLs were also found to protect against several other stresses.Endoplasmic reticulum (ER) stress is a mechanism that may play a role in the onset of T2D. The unfolded protein response (UPR) is a physiological process that aims at maintaining ER homeostasis in conditions where the protein folding and secretion is perturbed. Specific signalling pathways are involved in the increase of folding, export and degradation capacity of the ER. However, in case where the stress is prolonged, this mechanism turns to be pathological, by inducing cell death effector pathways, leading to beta-cell apoptosis. In our study, we discovered that HDLs were protective against ER stress induced by drugs and physiological stresses such as saturated free fatty acids. HDLs protected beta-cells by promoting ER homeostasis via the improvement of the folding and trafficking od proteins from the ER to the Golgi apparatus.Altogether our results suggest that HDLs are important for beta-cell function and survival, by protecting them from several stresses and acting on ER homeostasis. This suggests that attempt in keeping normal HDLs levels or function in patients is crucial to lessen the development of T2D.RÉSUMÉL'incidence du diabète de type 2 est en constante augmentation et est fortement liée à l'accroissement du taux d'obésité. La cause principale du diabète de type 2 est la résistance à l'insuline, qui entraîne une surproduction d'insuline par les cellules bêta pancréatiques. Dans un environnement pathologique associé à l'obésité (dyslipidémie, hyperglycémie et inflammation), les cellules bêta les plus vulnérables ne sont plus capables de compenser en augmentant leur production d'insuline, dysfonctionnent, ce qui conduit à leur mort par apoptose. Les lipoprotéines de hautes densités (HDLs), communément appelées (( bon cholestérol », sont connues pour leurs propriétés protectrices contre l'athérosclérose. Des niveaux bas de HDLs sanguins sont associés au risque de développer un diabète de type 2. Les HDLs ont également montré des propriétés protectrices contre divers stresses dans la cellule bêta. Cependant, les mécanismes de protection restent encore inconnus et l'objectif de ce travail a été d'investiguer les mécanismes moléculaires de protection des HDLs. La première approche choisie a été une étude du profil d'expression génique par puce à ADN afin d'identifier les gènes régulés par le stress et les HDLs. Parmi les gènes régulés, notre intérêt s'est porté sur 4E-BP1, un inhibiteur de la traduction coiffe- dépendante, dont l'induction par le stress était corrélée avec une augmentation de l'apoptose. Suite à cette étude, les HDLs ont également montrés un rôle protecteur contre d'autres stresses. Il s'agit particulièrement du stress du réticulum endoplasmique (RE), qui est un mécanisme qui semble jouer un rôle clé dans le développement du diabète. L'UPR (« Unfolded Protein Response ») est un processus physiologique tendant à maintenir l'homéostasie du réticulum endoplasmique, organelle prépondérante pour la fonction des cellules sécrétrices, notamment lorsqu'elle est soumise à des conditions extrêmes telles que des perturbations de la conformation tertiaire des protéines ou de la sécrétion. Dans ces cas, des voies de signalisation moléculaires sont activées, ce qui mène à l'exportation des protéines mal repliées, à leur dégradation et à l'augmentation de l'expression de chaperonnes capables d'améliorer le repliement des protéines mal formées. Toutefois, en cas de stress persistant, ce mécanisme de protection s'avère être pathologique. En induisant des voies de signalisation effectrices de l'apoptose, il conduit finalement au développement du diabète. Dans cette étude, nous avons démontré que les HDLs étaient capables de protéger la cellule bêta contre le stress du RE induits par des inhibiteurs (thapsigargine, tunicamycine) ou des stresses physiologiques tels que les acides gras libres. Les HDLs ont la capacité d'améliorer l'homéostasie du RE, notamment en favorisant le repliement et le transfert des protéines du RE à l'appareil de Golgi.En résumé, ces données suggèrent que les HDLs sont bénéfiques pour la survie des cellules bêta soumises à des stresses impliqués dans le développement du diabète, notamment en restaurant l'homéostasie du RE. Ces résultats conduisent à soutenir que le maintien des taux de cholestérol joue un rôle important dans la limitation de l'incidence du diabète.
Resumo:
Tumor-reactive T cells play an important role in cancer immunosurveillance. Applying the multimer technology, we report here an unexpected high frequency of Melan-A-specific CTLs in a melanoma patient with progressive lymph node metastases, consisting of 18 and 12.8% of total peripheral blood and tumor-infiltrating CD8+ T cells, respectively. Melan-A-specific CTLs revealed a high cytolytic activity against allogeneic Melan-A-expressing target cells but failed to kill the autologous tumor cells. Loading of the tumor cells with Melan-A peptide reversed the resistance to killing, suggesting impaired function of the MHC class I antigen processing and presentation pathway. Mutations of the coding region of the HLA-A2 binding Melan-A26-35 peptide or down-regulation of the MHC class I heavy chain, the antigenic peptide TAP, and tapasin could be excluded. However, PCR and immunohistochemical analysis revealed a deficiency of the immunoproteasomes low molecular weight protein 2 and low molecular weight protein 7 in the primary tumor cells, which affects the quantity and quality of generated T-cell epitopes and might explain the resistance to killing. This is supported by our data, demonstrating that the resistance to killing can be partially reversed by pre-exposure of the tumor cells to IFN-gamma, which is known to induce the immunoproteasomes. Overall, this is the first report of an extremely high frequency of tumor-specific CTLs that exhibit competent T-cell-effector functions but fail to lyse the autologous tumor cells. Immunotherapeutic approaches should not only focus on the induction of a robust antitumor immune response, but should also have to target tumor immune escape mechanisms.