952 resultados para Eddy covariance
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
Gases in the atmosphere/ocean have solubility that spans several orders of magnitude. Resistance in the molecular sublayer on the waterside limits the air-sea exchange of sparingly soluble gases such as SF6 and CO2. In contrast, both aerodynamic and molecular diffusive resistances on the airside limit the exchange of highly soluble gases (as well as heat). Here we present direct measurements of air-sea methanol and acetone transfer from two open cruises: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The transfer of the highly soluble methanol is essentially completely airside controlled, while the less soluble acetone is subject to both airside and waterside resistances. Both compounds were measured concurrently using a proton-transfer-reaction mass spectrometer, with their fluxes quantified by the eddy covariance method. Up to a wind speed of 15 m s-1, observed air-sea transfer velocities of these two gases are largely consistent with the expected near linear wind speed dependence. Measured acetone transfer velocity is ~30% lower than that of methanol, which is primarily due to the lower solubility of acetone. From this difference we estimate the "zero bubble" waterside transfer velocity, which agrees fairly well with interfacial gas transfer velocities predicted by the COARE model. At wind speeds above 15 m s-1, the transfer velocities of both compounds are lower than expected in the mean. Air-sea transfer of sensible heat (also airside controlled) also appears to be reduced at wind speeds over 20 m s-1. During these conditions, large waves and abundant whitecaps generate large amounts of sea spray, which is predicted to alter heat transfer and could also affect the air-sea exchange of soluble trace gases. We make an order of magnitude estimate for the impacts of sea spray on air-sea methanol transfer.
Resumo:
Le réchauffement climatique affecte fortement les régions nordiques du Canada où le dégel du pergélisol discontinu à sa limite sud est accompagné du mouvement de la limite des arbres vers le nord en zone de pergélisol continu. Ces altérations faites aux paysages de la Taïga des Plaines sont le point de départ de plusieurs rétroactions puisque les changements apportés aux caractéristiques de la surface (au niveau de l’albédo, l’humidité du sol et la rugosité de la surface) vont à leur tour entraîner des modifications biophysiques et éventuellement influencer l’augmentation ou la diminution subséquente des températures et de l’humidité de l’air. Seulement, il y a un nombre important de facteurs d’influence qu’il est difficile de projeter toutes les boucles rétroactives qui surviendront avec les présents changements climatiques en régions nordiques. Dans le but de caractériser les échanges d’eau et d’énergie entre la surface et l’atmosphère de trois sites des Territoires du Nord-Ouest subissant les conséquences de l’augmentation des températures de l’air, la méthode micro-météorologique de covariance des turbulences fut utilisée en 2013 aux sites de Scotty Creek (forêt boréale et tourbière nordique en zone de pergélisol sporadique-discontinu), de Havikpak Creek (forêt boréale nordique en zone de pergélisol continu) et de Trail Valley Creek (toundra arctique en zone de pergélisol continu). En identifiant les procédés biotiques et abiotiques (ex. intensité lumineuse, disponibilité en eau, etc.) d’évapotranspiration aux trois sites, les contrôles par l’eau et l’énergie furent caractérisés et permirent ainsi de projeter une augmentation de la limitation en eau, mais surtout en énergie du site de Trail Valley Creek. La répartition de l’énergie projetée est semblable à celle de Havikpak Creek, avec une augmentation de la proportion du flux de chaleur sensible au détriment de celui latent suite aux modifications des caractéristiques de la surface (albédo, rugosité et humidité du sol). L’augmentation relative du flux d’énergie sensible laisse présager une boucle rétroactive positive de l’augmentation des températures de l’air à ce site. Ensuite, en comparant des données modelées de la hauteur de la couche limite planétaire et des données provenant de profils atmosphériques d’Environnement Canada entre les trois sites, les changements de hauteur de cette couche atmosphérique furent aussi projetés. Trail Valley Creek pourrait connaître une hausse de la hauteur de sa couche limite planétaire avec le temps alors que Scotty Creek connaîtrait une diminution de celle-ci. Ces changements au niveau des couches atmosphériques liés à la répartition des flux d’énergie dans les écosystèmes se répercuteraient alors sur le climat régional de façon difficile à déterminer pour l’instant. Les changements apportés désignent une boucle rétroactive positive des températures de l’air à Trail Valley Creek et l’inverse à Scotty Creek. Les deux axes d’analyse arrivent donc aux mêmes conclusions et soulignent aussi l’importance de l’influence mutuelle entre le climat et les caractéristiques spécifiques des écosystèmes à la surface.
Resumo:
Le réchauffement climatique affecte fortement les régions nordiques du Canada où le dégel du pergélisol discontinu à sa limite sud est accompagné du mouvement de la limite des arbres vers le nord en zone de pergélisol continu. Ces altérations faites aux paysages de la Taïga des Plaines sont le point de départ de plusieurs rétroactions puisque les changements apportés aux caractéristiques de la surface (au niveau de l’albédo, l’humidité du sol et la rugosité de la surface) vont à leur tour entraîner des modifications biophysiques et éventuellement influencer l’augmentation ou la diminution subséquente des températures et de l’humidité de l’air. Seulement, il y a un nombre important de facteurs d’influence qu’il est difficile de projeter toutes les boucles rétroactives qui surviendront avec les présents changements climatiques en régions nordiques. Dans le but de caractériser les échanges d’eau et d’énergie entre la surface et l’atmosphère de trois sites des Territoires du Nord-Ouest subissant les conséquences de l’augmentation des températures de l’air, la méthode micro-météorologique de covariance des turbulences fut utilisée en 2013 aux sites de Scotty Creek (forêt boréale et tourbière nordique en zone de pergélisol sporadique-discontinu), de Havikpak Creek (forêt boréale nordique en zone de pergélisol continu) et de Trail Valley Creek (toundra arctique en zone de pergélisol continu). En identifiant les procédés biotiques et abiotiques (ex. intensité lumineuse, disponibilité en eau, etc.) d’évapotranspiration aux trois sites, les contrôles par l’eau et l’énergie furent caractérisés et permirent ainsi de projeter une augmentation de la limitation en eau, mais surtout en énergie du site de Trail Valley Creek. La répartition de l’énergie projetée est semblable à celle de Havikpak Creek, avec une augmentation de la proportion du flux de chaleur sensible au détriment de celui latent suite aux modifications des caractéristiques de la surface (albédo, rugosité et humidité du sol). L’augmentation relative du flux d’énergie sensible laisse présager une boucle rétroactive positive de l’augmentation des températures de l’air à ce site. Ensuite, en comparant des données modelées de la hauteur de la couche limite planétaire et des données provenant de profils atmosphériques d’Environnement Canada entre les trois sites, les changements de hauteur de cette couche atmosphérique furent aussi projetés. Trail Valley Creek pourrait connaître une hausse de la hauteur de sa couche limite planétaire avec le temps alors que Scotty Creek connaîtrait une diminution de celle-ci. Ces changements au niveau des couches atmosphériques liés à la répartition des flux d’énergie dans les écosystèmes se répercuteraient alors sur le climat régional de façon difficile à déterminer pour l’instant. Les changements apportés désignent une boucle rétroactive positive des températures de l’air à Trail Valley Creek et l’inverse à Scotty Creek. Les deux axes d’analyse arrivent donc aux mêmes conclusions et soulignent aussi l’importance de l’influence mutuelle entre le climat et les caractéristiques spécifiques des écosystèmes à la surface.
Resumo:
The study of lake–atmosphere interactions was the main purpose of a 2014 summer experiment at Alqueva reservoir in Portugal. Near-surface fluxes of momentum, heat and mass [water vapour (H2O) and carbon dioxide (CO2)] were obtained with the new Campbell Scientific’s IRGASON Integrated Open-Path CO2/H2O Gas Analyser and 3D Sonic Anemometer between 2 June and 2 October. On average, the reservoir was releasing energy in the form of sensible and latent heat flux during the study period. At the end of the 75 d, the total evaporation was estimated as 490.26 mm. A high correlation was found between the latent heat flux and the wind speed (R = 0.97). The temperature gradient between air and water was positive between 12 and 21 UTC, causing a negative sensible heat flux, and negative during the rest of the day, triggering a positive sensible heat flux. The reservoir acted as a sink of atmospheric CO2 with an average rate of −0.026 mg m−2 s−1. However, at a daily scale we found an unexpected uptake between 0 and 9 UTC and almost null flux between 13 and 19 UTC. Potential reasons for this result are further discussed. The net radiation was recorded for the same period and water column heat storage was estimated using water temperature profiles. The energy balance closure for the analysed period was 81%. In-water solar spectral downwelling irradiance profiles were measured with a new device allowing measurements independent of the solar zenith angle, which enabled the computation of the attenuation coefficient of light in the water column. The average attenuation coefficient for the photosynthetically active radiation spectral region varied from 0.849 ± 0.025 m−1 on 30 July to 1.459 ± 0.007 m−1 on 25 September.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
Numerical study is carried out using large eddy simulation to study the heat and toxic gases released from fires in real road tunnels. Due to disasters about tunnel fires in previous decade, it attracts increasing attention of researchers to create safe and reliable ventilation designs. In this research, a real tunnel with 10 MW fire (which approximately equals to the heat output speed of a burning bus) at the middle of tunnel is simulated using FDS (Fire Dynamic Simulator) for different ventilation velocities. Carbone monoxide concentration and temperature vertical profiles are shown for various locations to explore the flow field. It is found that, with the increase of the longitudinal ventilation velocity, the vertical profile gradients of CO concentration and smoke temperature were shown to be both reduced. However, a relatively large longitudinal ventilation velocity leads to a high similarity between the vertical profile of CO volume concentration and that of temperature rise.
Resumo:
Objective To explore the characteristics of regional distribution of cancer deaths in Shandong Province with the principle components analysis. Methods The principle components analysis with co-variance matrix for age-adjusted mortality rates and percentages of 20 types of cancer in 22 counties (cities) were carried out using SAS Software. Results Over 90% of the total information could be reflected by the top 3 principle components and the first principle component alone represented more than half of the overall regional variances. The first component mainly reflected the area differences of esophageal cancer. The second component mainly reflected the area differences of lung cancer, stomach cancer and liver cancer. The value of the first principal component scores showed a clear trend that the west areas possessed higher values and the east the lower values. Based on the top two components,the 22 counties (cities) could be divided into several geographical clusters. Conclusion The overall difference of regional distribution of cancers in Shandong is dominated by several major cancers including esophageal cancer, lung cancer, stomach cancer and liver cancer. Among them,esophageal cancer makes the largest contribution. If the range of counties (cities) analyzed could be further widened, the characteristics of regional distribution of cancer mortality would be better examined. Abstract in Chinese 目的 利用主成分分析探讨山东省恶性肿瘤死亡的地区分布特征. 方法 利用SAS软件对山东省22个县市区2004~2006午的20种恶性肿瘤标化死亡率和构成比分别进行协方差矩阵主成分分析. 结果 前3个主成分就反映了总体差异90%以上的信息,其中仅第1主成分就提供了总体差异一半以上的信息.第1主成分主要反映了食管癌的地区差异,第2主成分主要反映肺癌的地区差异,兼顾胃癌和肝癌.各地区第1主成分得分呈现西高东低的趋势,根据第1和第2主成分可以将调查地区分为若干类别,表现为明显的地理聚集性. 结论 山东省各地区恶性肿瘤死亡的总体差异主要取决于少数高发肿瘤,包括食管癌、肺癌、胃癌、肝癌等,其中以食管癌地位最为突出.如能进一步扩大分析范围,可更好地查明恶性肿瘤死亡的地区特征.
Resumo:
This exhibiton bought together a selection of artists - Danielle Clej, Channon Goodwin, Christopher Handran, Majena Mafe, Erika Scott and Mark Webb - to explore the role conversations and incidental engagements play as part of making art.The premise of the show focused on how these artists might respond to the process of sharing ideas and responses to one other in the making of artwork.
Resumo:
In this paper we introduce a novel domain-invariant covariance normalization (DICN) technique to relocate both in-domain and out-domain i-vectors into a third dataset-invariant space, providing an improvement for out-domain PLDA speaker verification with a very small number of unlabelled in-domain adaptation i-vectors. By capturing the dataset variance from a global mean using both development out-domain i-vectors and limited unlabelled in-domain i-vectors, we could obtain domain- invariant representations of PLDA training data. The DICN- compensated out-domain PLDA system is shown to perform as well as in-domain PLDA training with as few as 500 unlabelled in-domain i-vectors for NIST-2010 SRE and 2000 unlabelled in-domain i-vectors for NIST-2008 SRE, and considerable relative improvement over both out-domain and in-domain PLDA development if more are available.
Resumo:
Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.