1000 resultados para EXCIMER FORMATION
Resumo:
S100A6 is a small EF-hand calcium- and zinc-binding protein involved in the regulation of cell proliferation and cytoskeletal dynamics. It is overexpressed in neurodegenerative disorders and a proposed marker for Amyotrophic Lateral Sclerosis (ALS). Following recent reports of amyloid formation by S100 proteins, we investigated the aggregation properties of S100A6. Computational analysis using aggregation predictors Waltz and Zyggregator revealed increased propensity within S100A6 helices HI and HIV. Subsequent analysis of Thioflavin-T binding kinetics under acidic conditions elicited a very fast process with no lag phase and extensive formation of aggregates and stacked fibrils as observed by electron microscopy. Ca2+ exerted an inhibitory effect on the aggregation kinetics, which could be reverted upon chelation. An FT-IR investigation of the early conformational changes occurring under these conditions showed that Ca2+ promotes anti-parallel β-sheet conformations that repress fibrillation. At pH 7, Ca2+ rendered the fibril formation kinetics slower: time-resolved imaging showed that fibril formation is highly suppressed, with aggregates forming instead. In the absence of metals an extensive network of fibrils is formed. S100A6 oligomers, but not fibrils, were found to be cytotoxic, decreasing cell viability by up to 40%. This effect was not observed when the aggregates were formed in the presence of Ca2+. Interestingly, native S1006 seeds SOD1 aggregation, shortening its nucleation process. This suggests a cross-talk between these two proteins involved in ALS. Overall, these results put forward novel roles for S100 proteins, whose metal-modulated aggregation propensity may be a key aspect in their physiology and function.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Advanced glycation end-products are Maillard reaction products that are found in thermal processed food. This compounds are often referred as unhealthy for human diet, namely because of their capacity to form amino-acid dimers. There is a broad range of answers to get about how these products are formed, how they interact with the organism and how these reactions can be inhibited to prevent the referred effects. Some compounds from garlic are thought to be able to inhibit these reactions. This study using spectrophotometric, High Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS/MS) and Fourier transformed infrared spectroscopy (FTIR) analysis, helps to understand better not only not only the effect of some compounds obtained from garlic, diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DATS), on these AGEs production reaction, but also helped to understand better the reaction itself.
Resumo:
Dalton Trans., 2009, 7985–7994
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Platelet Concentrates (PCs) are the blood components with the highest rate of bacterial contamination, and coagulase-negative staphylococci (CoNS) are the most frequently isolated contaminants. This study investigated the biofilm formation of 16 contaminated units out of 691 PCs tested by phenotypic and genotypic methods. Adhesion in Borosilicate Tube (ABT) and Congo Red Agar (CRA) tests were used to assess the presence of biofilm. The presence of icaADC genes was assessed by means of the Polymerase Chain Reaction (PCR) technique. With Vitek(r)2, Staphylococcus haemolyticus was considered the most prevalent CoNS (31.25%). The CRA characterized 43.8% as probable biofilm producers, and for the ABT test, 37.5%. The icaADC genes were identified in seven samples by the PCR. The ABT technique showed 85.7% sensitivity and 100% specificity when compared to the reference method (PCR), and presented strong agreement (k = 0.8). This study shows that species identified as PCs contaminants are considered inhabitants of the normal skin flora and they might become important pathogens. The results also lead to the recommendation of ABT use in laboratory routine for detecting biofilm in CoNS contaminants of PCs.
Resumo:
Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.
Resumo:
Inorg. Chem., 2003, 42 (4), pp 938–940 DOI: 10.1021/ic0262886
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Infection by Trypanosoma cruzi in mice depresses hepatic granuloma formation around Schistosoma mansoni eggs. This immunodepressive effect occurred in mice with Chagas' disease at the acute and/or chronic phases, granulomas being signijicantly smaller than those in Controls. Data suggest that Chagas ' disease depresses the delayed hypersensitivity immune response directly.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
The analysis of molecular regulators involved in controlling the maintenance and function of plant meristems has been the subject of many studies. Some master regulators of these processes have been identified in Arabidopsis benefiting from the array of tools available for genetic and molecular analysis in this model plant. However, aspects such as secondary growth that are more extensively observed in woody plants, have been less studied. Secondary growth is responsible for the enlargement of the plant stems and roots and results from the activity of the lateral (secondary) meristems, vascular cambium and cork cambium (phellogen), which produce two important renewable natural resources, wood and cork, respectively.(...)
Resumo:
Introduction The aim of this study was to investigate the effects of Rosmarinus officinalis essential oil on germ tube formation by Candida albicans isolated from denture wearers. Methods Ten C. albicans isolates recovered from denture wearers were tested using 10% fetal bovine serum with or without 4% R. officinalis essential oil. Results The essential oil from R. officinalis completely inhibited germ tube formation in the investigated C. albicans isolates. Conclusions The results demonstrate that the essential oil of R. officinalis modulates C. albicans pathogenicity through its primary virulence factor (i.e., germ tube formation was suppressed).
Resumo:
AbstractINTRODUCTION:Chamomile ( Chamaemelum nobile ) is widely used throughout the world, and has anti-inflammatory, deodorant, bacteriostatic, antimicrobial, carminative, sedative, antiseptic, anti-catarrhal, and spasmolytic properties. Because of the increasing incidence of drug-resistant bacteria, the development of natural antibacterial sources such as medical herbs for the treatment of infectious diseases is necessary. Extracts from different plant parts such as the leaves, flowers, fruit, and bark of Combretum albiflorum, Laurus nobilis , and Sonchus oleraceus were found to possess anti-quorum sensing (QS) activities. In this study, we evaluated the effect of C. nobile against Pseudomonas aeruginosa biofilm formationMETHODS:The P. aeruginosa samples were isolated from patients with different types of infection, including wound infection, septicemia, and urinary tract infection. The flowers of C. nobile were dried and the extract was removed using a rotary device and then dissolved in dimethyl sulfoxide at pH 7.4. The microdilution method was used to evaluate the minimum inhibitory concentration (MIC) of this extract on P. aeruginosa , and biofilm inhibition was assayed.RESULTS:Eighty percent of the isolated samples (16/20) could form a biofilm, and most of these were isolated from wound infections. The biofilm inhibitory concentration of the C. nobile extract was 6.25-25mg/ml, whereas the MIC was 12.5-50mg/ml.CONCLUSIONS:The anti-QS property of C. nobile may play an important role in its antibacterial activity, thus offering an additional strategy in the fight against bacterial infections. However, molecular investigation is required to explore the exact mechanisms of the antibacterial action and functions of this phytocompound.