999 resultados para EPMA geochemistry
Resumo:
This study investigates processes of sediment generation in equatorial central Africa. An original, complete and integrated mineralogical-geochemical database on silt-sized sediments derived from different parent rocks (basalt, granite, gneiss, metapsammite, sandstone) along the East African Rift from 5°S in Tanzania to 5°N in Sudan is presented and used to assess the incidence of diverse factors controlling sediment composition (source-rock lithology, geomorphology, hydraulic sorting, grain size, recycling), with particular emphasis on chemical weathering.
Resumo:
In order to determine the extent and timing of dyke formation in the Ladakh Batholith we examined about 30 mostly andesitic dykes intruding the Ladakh batholith in a ca. 50 km wide area to the west of Leh (NW India). The dykes in the east of the area trend E-NE and those in the west trend N-NW. The difference in orientation is also evident in the petrography and isotopic signatures. The eastern dykes contain corroded quartz xenocrysts and show negative ε0(Nd) and positive ε0(Sr) values, where as the western dykes do not contain quartz xenocrysts and exhibit positive ε0(Nd) and near-zero ε0(Sr) values. The variability in Sr-Nd isotopes (ε0(Nd) = 3.6 to −9.6, ε0(Sr) = 0.4 to 143) and the quartz xenocrysts can best be explained by (differing degrees of) crustal assimilation of the parent magma of the dykes. Separated minerals from five dykes were dated by 40Ar-39Ar incremental heating: amphibole ages range between 50 and 54 Ma, and one biotite dated both by Rb-Sr and by 40Ar-39Ar gave an age of 45 Ma. One dated pseudotachylyte sample attests to brittle faulting at ca. 54 Ma. The combination of structural field evidence with petrographic, isotopic and geochronological analyses demonstrates that the dykes did not form from a single, progressively differentiating magma chamber, despite having formed in the same tectonic setting around the same time, and that processes such as crustal assimilation and magma mixing/mingling also played a significant role in magma petrogenesis.
Resumo:
Numerical calculations describing weathering of the Poços de Caldas alkaline complex (Minas Gerais, Brazil) by infiltrating groundwater are carried out for time spans up to two million years in the absence of pyrite, and up to 500,000 years with pyrite present. Deposition of uranium resulting from infiltration of oxygenated, uranium bearing groundwater through the hydrothermally altered phonolitic host rock at the Osamu Utsumi uranium mine is also included in the latter calculation. The calculations are based on the quasi-stationary state approximation to mass conservation equations for pure advective transport. This approximation enables the prediction of solute concentrations, mineral abundances and porosity as functions of time and distance over geologic time spans. Mineral reactions are described by kinetic rate laws for both precipitation and dissolution. Homogeneous equilibrium is assumed to be maintained within the aqueous phase. No other constraints are imposed on the calculations other than the initial composition of the unaltered host rock and the composition of the inlet fluid, taken as rainwater modified by percolation through a soil zone. The results are in qualitative agreement with field observations at the Osamu Utsumi uranium mine. They predict a lateritic cover followed by a highly porous saprolitic zone, a zone of oxidized rock with pyrite replaced by iron-hydroxide, a sharp redox front at which uranium is deposited, and the reduced unweathered host rock. Uranium is deposited in a narrow zone located on the reduced side of the redox front in association with pyrite, in agreement with field observations. The calculations predict the formation of a broad dissolution front of primary kaolinite that penetrates deep into the host rock accompanied by the precipitation of secondary illite. Secondary kaolinite occurs in a saprolitic zone near the surface and in the vicinity of the redox front. Gibbsite forms a bi-modal distribution consisting of a maximum near the surface followed by a thin tongue extending downward into the weathered profile in agreement with field observations. The results are found to be insensitive to the kinetic rate constants used to describe mineral reactions.
Resumo:
A total of 167 samples distubuted throughout the CRP-3 drillhole from 5.77 to 787.68 mbsf and representing fine to coarse sandstones have been analysed by X-ray fluorescence spectrometry (XRF) Bulk sample geochemistry (major and trace elements) indicates a dominant provenance of detritus from the Ferrar Supergroup in the uppermost 200 mbsf of the core. A markedly increased contribution from the Beacon sandstones is recognized below 200 mbsf and down to 600 mbsf. In the lower part of CRP-3, down to 787.68 mbsf, geochemical evidence for influxes of Ferrar materials is again recorded. On the basis of preliminary magnetostratigraphic data reported for the lower 447 mbsf of the drillhole, we tentatively evaluated the main periodicities modulating the geochemical records. Our results identify a possible influence of the precession, obliquity and long-eccentricity astronomical components (21, 41, and 400 ky frequency bands) on the deposition mechanisms of the studied glaciomarine sediments.
Resumo:
Thirty-nine medium and fine grained sandstones from between 19,26 and 147,23 mbsf in the Cape Roberts-l core (CRP-1) were analysed for 10 major and 16 trace elements. Using whole-lock compositions, 9 samples were selected for analyses of mineral and glass grains by energy dispersive electron microscope. Laser-Ablation Mass-Spectrometry was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to examine their contribution to the bulk rock chemistry. Geochemical data reveal the major contribution played by the Granite Harbour Intrusives to the whole rock composition, even if a significant input is supplied by McMurdo volcanics and Ferrar dolerite pyroxenes McMurdo volcanics were studied in detail; they appeal to derive from a variety of litologies, and a dominant role of wind transpoitation from exposures of volcanic rocks may be inferred from the contemporary occurrence of different compositions at all depths. Only at 116.55 mbsf was a thin layer of tephra found, linked to an explosive eruption McMurdo volcanic rocks exhibit larger abundances at depths above 62 mbsf, in correspondence with the onset of volcanic activity in the McMurdo Sound area. From 62 mbsf to the bottom of the core, McMurdo volcanics are less abundant and probably issued from some centres in the McMurdo Sound region. However, available data do not allow the exclusion of wind transport from some eruptive centres active in north Victoria Land at the beginning of the Miocene Epoch.
Resumo:
The 16 samples of Deep Sea Drilling Project (DSDP) Leg 89 basalts that we analyzed for whole rock major and trace elements and for mineralogic compositions are identical to some of the basalts recovered during Leg 61. Leg 89 samples are mostly olivine-plagioclase-clinopyroxene sparsely phyric basalts and exhibit a wide variety of textures. These basalts have lower TiO2 at a given Mg/(Mg+Fe2+)*100 than MORB (midocean ridge basalt). We recognize three major chemical types of basalts in the Nauru Basin. We believe that different degrees of partial melting, modified by fractional crystallization and possibly by magma mixing at shallow depths, can explain the chemical differences among the three groups. This petrogenetic model is consistent with the observed downhole chemical-chronostratigraphic relations of the samples. New 87Sr/86Sr and U3Nd/144Nd analyses of basalt samples from DSDP Site 462 indicate that the Nauru Basin igneous complex is within the Sr-Nd isotopic range of ocean island basalt. Thus the Nauru Basin igneous complex resembles MORB in many aspects of its chemistry, morphology, and secondary alteration patterns (Larson, Schlanger, et al., 1981), but not in its isotopic characteristics. If it were not for the unambiguous evidence that the Nauru Basin complex was erupted off-ridge, the complex could easily be interpreted as normal oceanic layer 2. For this reason, we speculate that the Nauru Basin igneous complex was produced in an oceanic riftlike environment when multiple, fast-propagating rifts were formed during the fast seafloor spreading episode in the Cretaceous.
Resumo:
The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.
Resumo:
In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio)geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct ~1500-year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.