619 resultados para ENTEROCOCCUS DURANS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infective endocarditis due to vancomycin-resistant (VR) Enterococcus faecalis has only rarely been reported. We report a case of VR E. faecalis endocarditis that failed to respond to linezolid therapy, outline the virulence traits of the isolate, and review previously published cases of VR E. faecalis endocarditis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P < 0.0001). Blocking Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We identify ef1090 (renamed ebpR) and show its importance for the transcriptional regulation of expression of the Enterococcus faecalis pilus operon, ebpABC. An ebpR deletion (DeltaebpR) mutant was found to have reduced ebpABC expression with loss of pilus production and a defect in primary adherence with, as a consequence, reduced biofilm formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deletion mutants of the two sortase genes of Enterococcus faecalis OG1RF were constructed. srtC (renamed here bps for biofilm and pilus-associated sortase) was previously shown to be necessary for the production of Ebp pili and important for biofilm formation and endocarditis. Here, we report that a srtA deletion mutant showed a small (5%) yet significant (P = 0.037) reduction in biofilm relative to OG1RF, while a DeltasrtA Deltabps double mutant showed a much greater reduction (74% versus OG1RF and 44% versus the Deltabps mutant). In a murine urinary tract infection (UTI), the 50% infective doses of both the DeltasrtA Deltabps and Deltabps mutants were approximately 2 log10 greater than that of OG1RF or the DeltasrtA mutant. Similarly, approximately 2 log10 fewer bacteria were recovered from the kidneys after infection with the Deltabps mutant (P = 0.017) and the DeltasrtA Deltabps double mutant (P = 0.022) compared to wild-type strain OG1RF. In a competition UTI, the Deltabps mutant was slightly, but not significantly, less attenuated than the DeltasrtA Deltabps double mutant. Fluorescence-activated cell sorter analysis with Ebp-specific antibodies confirmed that a minority of OG1RF cells express Ebp pili on their surface in vitro and that Bps has a major role in Ebp pilus biogenesis but also indicated a function for SrtA in surface localization of the pilus subunit protein EbpA. In conclusion, deletion of bps had a major effect on virulence in murine UTIs, as well as biofilm; deletion of srtA from OG1RF had little effect on these phenotypes, but its deletion from a bps mutant had a pronounced effect on biofilm, suggesting that Bps and/or the proteins it anchors may compensate for the loss of some SrtA function(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pili in Gram-positive bacteria play a major role in the colonization of host tissue and in the development of biofilms. They are promising candidates for vaccines or drug targets since they are highly immunogenic and share common structural and functional features among various Gram-positive pathogens. Numerous publications have helped build a detailed understanding of pilus surface assembly, yet regulation of pilin gene expression has not been well defined. Utilizing a monoclonal antibody developed against the Enterococcus faecalis major pilus protein EbpC, we identified mutants from a transposon (Tn) insertion library which lack surface-exposed Ebp pili. In addition to insertions in the ebp regulon, an insertion in ef1184 (dapA) significantly reduced levels of EbpC. Analysis of in-frame dapA deletion mutants and mutants with the downstream gene rnjB deleted further demonstrated that rnjB was responsible for the deficiency of EbpC. Sequence analysis revealed that rnjB encodes a putative RNase J2. Subsequent quantitative real-time PCR (qRT-PCR) and Northern blotting demonstrated that the ebpABC mRNA transcript level was significantly decreased in the rnjB deletion mutant. In addition, using a reporter gene assay, we confirmed that rnjB affects the expression of the ebpABC operon. Functionally, the rnjB deletion mutant was attenuated in its ability to produce biofilm, similar to that of an ebpABC deletion mutant which lacks Ebp pili. Together, these results demonstrate the involvement of rnjB in E. faecalis pilin gene expression and provide insight into a novel mechanism of regulation of pilus production in Gram-positive pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously identified a gene cluster, epa (for enterocococcal polysaccharide antigen), involved in polysaccharide biosynthesis of Enterococcus faecalis and showed that disruption of epaB and epaE resulted in attenuation in translocation, biofilm formation, resistance to polymorphonuclear leukocyte (PMN) killing, and virulence in a mouse peritonitis model. Using five additional mutant disruptions in the 26-kb region between orfde2 and OG1RF_0163, we defined the epa locus as the area from epaA to epaR. Disruption of epaA, epaM, and epaN, like prior disruption of epaB and epaE, resulted in alteration in Epa polysaccharide content, more round cells versus oval cells with OG1RF, decreased biofilm formation, attenuation in a mouse peritonitis model, and resistance to lysis by the phage NPV-1 (known to lyse OG1RF), while mutants disrupted in orfde2 and OG1RF_163 (the epa locus flanking genes) behaved like OG1RF in those assays. Analysis of the purified Epa polysaccharide from OG1RF revealed the presence of rhamnose, glucose, galactose, GalNAc, and GlcNAc in this polysaccharide, while carbohydrate preparation from the epaB mutant did not contain rhamnose, suggesting that one or more of the glycosyl transferases encoded by the epaBCD operon are necessary to transfer rhamnose to the polysaccharide. In conclusion, the epa genes, uniformly present in E. faecalis strains and involved in biosynthesis of polysaccharide in OG1RF, are also important for OG1RF shape determination, biofilm formation, and NPV-1 replication/lysis, as well as for E. faecalis virulence in a mouse peritonitis model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic streptococci and enterococci primarily rely on the conserved secretory (Sec) pathway for the translocation and secretion of virulence factors out of the cell. Since many secreted virulence factors in gram-positive organisms are subsequently attached to the bacterial cell surface via sortase enzymes, we sought to investigate the spatial relationship between secretion and cell wall attachment in Enterococcus faecalis. We discovered that sortase A (SrtA) and sortase C (SrtC) are colocalized with SecA at single foci in the enterococcus. The SrtA-processed substrate aggregation substance accumulated in single foci when SrtA was deleted, implying a single site of secretion for these proteins. Furthermore, in the absence of the pilus-polymerizing SrtC, pilin subunits also accumulate in single foci. Proteins that localized to single foci in E. faecalis were found to share a positively charged domain flanking a transmembrane helix. Mutation or deletion of this domain in SrtC abolished both its retention at single foci and its function in efficient pilus assembly. We conclude that this positively charged domain can act as a localization retention signal for the focal compartmentalization of membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon sensing of peptide pheromone, Enterococcus faecalis efficiently transfers plasmid pCF10 through a type IV secretion (T4S) system to recipient cells. The PcfF accessory factor and PcfG relaxase initiate transfer by catalyzing strand-specific nicking at the pCF10 origin of transfer sequence (oriT). Here, we present evidence that PcfF and PcfG spatially coordinate docking of the pCF10 transfer intermediate with PcfC, a membrane-bound putative ATPase related to the coupling proteins of gram-negative T4S machines. PcfC and PcfG fractionated with the membrane and PcfF with the cytoplasm, yet all three proteins formed several punctate foci at the peripheries of pheromone-induced cells as monitored by immunofluorescence microscopy. A PcfC Walker A nucleoside triphosphate (NTP) binding site mutant (K156T) fractionated with the E. faecalis membrane and also formed foci, whereas PcfC deleted of its N-terminal putative transmembrane domain (PcfCDelta N103) distributed uniformly throughout the cytoplasm. Native PcfC and mutant proteins PcfCK156T and PcfCDelta N103 bound pCF10 but not pcfG or Delta oriT mutant plasmids as shown by transfer DNA immunoprecipitation, indicating that PcfC binds only the processed form of pCF10 in vivo. Finally, purified PcfCDelta N103 bound DNA substrates and interacted with purified PcfF and PcfG in vitro. Our findings support a model in which (i) PcfF recruits PcfG to oriT to catalyze T-strand nicking, (ii) PcfF and PcfG spatially position the relaxosome at the cell membrane to stimulate substrate docking with PcfC, and (iii) PcfC initiates substrate transfer through the pCF10 T4S channel by an NTP-dependent mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceftobiprole (BAL9141) is an investigational cephalosporin with broad in vitro activity against gram-positive cocci, including enterococci. Ceftobiprole MICs were determined for 93 isolates of Enterococcus faecalis (including 16 beta-lactamase [Bla] producers and 17 vancomycin-resistant isolates) by an agar dilution method following the Clinical and Laboratory Standards Institute recommendations. Ceftobiprole MICs were also determined with a high inoculum concentration (10(7) CFU/ml) for a subset of five Bla producers belonging to different previously characterized clones by a broth dilution method. Time-kill and synergism studies (with either streptomycin or gentamicin) were performed with two beta-lactamase-producing isolates (TX0630 and TX5070) and two vancomycin-resistant isolates (TX2484 [VanB] and TX2784 [VanA]). The MICs of ceftobiprole for 50 and 90% of the isolates tested were 0.25 and 1 microg/ml, respectively. All Bla producers and vancomycin-resistant isolates were inhibited by concentrations of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasmid-encoded, constitutively produced $\beta$-lactamase gene from Enterococcus faecalis strain HH22 was genetically characterized. A restriction endonuclease map of the 5.1 kb EcoRI fragment encoding the enterococcal $\beta$-lactamase was prepared and compared with the restriction map of a cloned staphylococcal $\beta$-lactamase gene (from the naturally-occurring staphylococcal $\beta$-lactamase plasmid pI258). Comparison and hybridization studies showed that there were identical restriction sites in the region of the $\beta$-lactamase structural gene but not in the region surrounding this gene. Also the enterococcal $\beta$-lactamase plasmid did not encode resistance to mercury or cadmium which is encoded by the small, transducible staphylococcal $\beta$-lactamase plasmids. The nucleotide sequence of the enterococcal gene was shown to be identical to the published sequences of three of four staphylococcal type A $\beta$-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred-forty nucleotides upstream of the $\beta$-lactamase start codon were also determined for the inducible staphylococcal $\beta$-lactamase gene on pI258; this sequence was identical to that of the constitutively expressed enterococcal gene indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The gene for the enterococcal $\beta$-lactamase and an inducible staphylococcal $\beta$-lactamase were each cloned into a shuttle vector and then transformed into enterococcal and staphylococcal recipients. The major difference between the two host backgrounds was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene but no qualitative difference was seen between the two genera. Also a difference in the level of resistance to ampicillin was seen between the two backgrounds with the cloned enzymes by MIC and time-kill studies. The location of the enzyme was found to be host dependent since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell bound enzyme in the enterococcus. Based on the identity of the enterococcal $\beta$-lactamase and several staphylococcal $\beta$-lactamases, these data suggest recent spread of $\beta$-lactamase to enterococci and also suggest loss of a functional repressor. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic libraries of two Enterococcus faecalis strains, OG1RF and TX52 (an isolate from an endocarditis patient), were constructed in Escherichia coli and were screened with serum from a rabbit immunized with surface proteins of an E. faecalis endocarditis isolate and sera from four patients with enterococcal endocarditis. Thirty-eight immunopositive cosmid clones reacted with at least two of the patient sera and contained distinct inserts based on their DNA restriction patterns. These were chosen for further subcloning in a pBluescript SK ($-$) vector. Each sublibrary was screened with one of the five sera. Analysis of sequences from the immunopositive subclones revealed similarities to a range of proteins, including bacterial virulence factors, transporters, two-component regulators, metabolic enzymes, and membrane or cell surface proteins. Fourteen subclones did not show significant similarity to any sequence in the databases and may contain novel genes. Thirteen of the immunopositive cosmid clones did not yield immunopositive subclones and one such cosmid clone, TX5159, produced an antigenic polysaccharide in Escherichia coli. The insert of TX5159 was found to contain a multicistronic gene cluster containing genes similar to those involved in the biosynthesis and export of polysaccharides from both Gram-positive and Gram-negative organisms. Insertions in several genes within the cluster abolished the immunoreactivity of TX5159. RT-PCR of genes within the cluster with total RNA from OG1RF showed that these genes are transcribed. The polysaccharide was detected in two recently reported E. faecalis mucoid strains using specific antibody, but not in the other strains tested. This is the first report on a gene cluster of E. faecalis involved in the biosynthesis of an antigenic polysaccharide. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Tn916-like transposon (TnFO1) was found in the multiple antibiotic resistant Enterococcus faecalis strain FO1 isolated from a raw milk cheese. In this strain, the tetracycline determinant was localized by DNA-DNA hybridization with a tetM nucleotide probe on the chromosome and on a 30-kb plasmid. The transposon TnFO1 was identified and characterized by DNA-DNA hybridization experiments with the five internal HincII fragments of Tn916. The tetracycline resistance determinant was identified by its complete nucleotide sequence as TetM. Transposon TnFO1 was also detected in its circular form by DNA-DNA hybridization and PCR amplification. Both ends including the joining region of the closed circular transposon TnFO1 were sequenced. TnFO1 could be transferred by conjugation from Enterococcus faecalis into Enterococcus faecalis, Lactococcus lactis subsp. lactis biovar. diacetylactis, Listeria innocua, Leuconostoc mesenteroides and Staphylococcus aureus, and from Lactococcus lactis subsp. lactis biovar. diacetylactis into Listeria innocua. Pulsed-field electrophoresis of genomic DNA from E. faecalis FO1 transconjugants showed that transposon TnFO1 integrated at different sites.