287 resultados para ENTERICA
Resumo:
We have recently reported that the intravaginal instillation of synthetic Toll-like receptor 3 (TLR3) or TLR9 agonists after a subcutaneous vaccination against human papillomavirus E7 highly increases (~5-fold) the number of vaccine-specific CD8(+) T cells in the genital mucosa of mice, without affecting E7-specific systemic responses. Here, we show that the instillation of live attenuated Salmonella enterica serovar Typhimurium similarly, though more efficiently (~15- fold), increases both E7-specific and total CD8(+) T cells in the genital mucosa. Cancer immunotherapeutic strategies combining vaccination with local immunostimulation with live bacteria deserve further investigations.
Resumo:
When all three separate quorum-sensing signals act in concert in Vibrio harveyi, they maximize bioluminescence and fully repress type III secretion. V. harveyi has five qrr loci encoding small RNA regulatory molecules, each consisting of about 100 nucleotides; several of them are involved in repressing bioluminescence. Small RNAs also play roles in population density-dependent activities, including regulation of virulence factors, for bacterial pathogens such as Pseudomonas fluorescens, V. cholerae, Salmonella enterica, Pseudomonas aeruginosa, and Erwinia spp. Although some bacteria appear to carry redundant copies of small RNA genes with which to finely tune expression
Resumo:
To be able to colonize its host, invading Salmonella enterica serovar Typhimurium must disrupt and severely affect host-microbiome homeostasis. Here we report that S. Typhimurium induces acute infectious colitis by inhibiting peroxisome proliferator-activated receptor gamma (PPARγ) expression in intestinal epithelial cells. Interestingly, this PPARγ down-regulation by S. Typhimurium is independent of TLR-4 signaling but triggers a marked elevation of host innate immune response genes, including that encoding the antimicrobial peptide lipocalin-2 (Lcn2). Accumulation of Lcn2 stabilizes the metalloproteinase MMP-9 via extracellular binding, which further aggravates the colitis. Remarkably, when exposed to S. Typhimurium, Lcn2-null mice exhibited a drastic reduction of the colitis and remained protected even at later stages of infection. Our data suggest a mechanism in which S. Typhimurium hijacks the control of host immune response genes such as those encoding PPARγ and Lcn2 to acquire residence in a host, which by evolution has established a symbiotic relation with its microbiome community to prevent pathogen invasion.
Resumo:
Recent publications have demonstrated that the protease caspase-1 is responsible for the processing of pro-interleukin 18 (IL-18) into the active form. Studies on cell lines and murine macrophages have shown that the bacterial invasion factor SipB activates caspase-1, triggering cell death. Thus, we investigated the role of SipB in the activation and release of IL-18 in human alveolar macrophages (AM), which are the first line of defense against inhaled pathogens. Under steady-state conditions, AM are a more important source of IL-18 than are dendritic cells (DC) and monocytes. Cytokine production by AM and DC was compared after both types of cells had been infected with a virulent strain of Salmonella enterica serovar Typhimurium and an isogenic sipB mutant, which were used as an infection model. Infection with virulent Salmonella led to marked cell death with features of apoptosis while both intracellular activation and release of IL-18 were demonstrated. In contrast, the sipB mutant did not induce such cell death or the release of active IL-18. The specific caspase-1 inhibitor Ac-YVAD-CMK blocked the early IL-18 release in AM infected with the virulent strain. However, the type of Salmonella infection did not differentially regulate IL-18 gene expression. We concluded that the bacterial virulence factor SipB plays an essential posttranslational role in the intracellular activation of IL-18 and the release of the cytokine in human AM.
Resumo:
An understanding of details of the interaction mechanisms of bacterial endotoxins (lipopolysaccharide, LPS) with the oxygen transport protein hemoglobin is still lacking, despite its high biological relevance. Here, a biophysical investigation into the endotoxin:hemoglobin interaction is presented which comprises the use of various rough mutant LPS as well as free lipid A; in addition to the complete hemoglobin molecule from fetal sheep extract, also the partial structure alpha-chain and the heme-free sample are studied. The investigations comprise the determination of the gel-to-liquid crystalline phase behaviour of the acyl chains of LPS, the ultrastructure (type of aggregate structure and morphology) of the endotoxins, and the incorporation of the hemoglobins into artificial immune cell membranes and into LPS. Our data suggest a model for the interaction between Hb and LPS in which hemoglobins do not react strongly with the hydrophilic or with the hydrophobic moiety of LPS, but with the complete endotoxin aggregate. Hb is able to incorporate into LPS with the longitudinal direction parallel to the lipid A double-layer. Although this does not lead to a strong disturbance of the LPS acyl chain packing, the change of the curvature leads to a slightly conical molecular shape with a change of the three-dimensional arrangement from unilamellar into cubic LPS aggregates. Our previous results show that cubic LPS structures exhibit strong endotoxic activity. The property of Hb on the physical state of LPS described here may explain the observation of an increase in LPS-mediating endotoxicity due to the action of Hb.
NLRC4 inflammasomes in dendritic cells regulate noncognate effector function by memory CD8⁺ T cells.
Resumo:
Memory T cells exert antigen-independent effector functions, but how these responses are regulated is unclear. We discovered an in vivo link between flagellin-induced NLRC4 inflammasome activation in splenic dendritic cells (DCs) and host protective interferon-γ (IFN-γ) secretion by noncognate memory CD8(+) T cells, which could be activated by Salmonella enterica serovar Typhimurium, Yersinia pseudotuberculosis and Pseudomonas aeruginosa. We show that CD8α(+) DCs were particularly efficient at sensing bacterial flagellin through NLRC4 inflammasomes. Although this activation released interleukin 18 (IL-18) and IL-1β, only IL-18 was required for IFN-γ production by memory CD8(+) T cells. Conversely, only the release of IL-1β, but not IL-18, depended on priming signals mediated by Toll-like receptors. These findings provide a comprehensive mechanistic framework for the regulation of noncognate memory T cell responses during bacterial immunity.
Resumo:
Intestinal infection with Salmonella enterica serotype Enteritidis, a food-borne infection spread to humans especially through contaminated eggs and egg-products as well as undercooked contaminated fresh meat, is the most common cause of intestinal inflammation in the European Union. Enteritis caused by Salmonella Enteritidis is characterized by fever, diarrhoea and abdominal pain. The disruption of the intestinal epithelial barrier function contributes to diarrhoea and is responsible for the perpetuation of the inflammatory process. In this sense, oxidative stress and the proinflammatory cytokines TNF-α, IFN-γ and IL-1β are described to induce the disorganization of the tight junctions (TJ), the most apical epithelial intercellular junctions and responsible for the paracellular permeability. The interest of this chapter relies not only in the investigation dealing with the mechanisms of TJ regulation but also in the contribution to the development of new tools for the prevention of epithelial barrier disruption in enteritis caused by Salmonella Enteritidis.
Resumo:
The clonal relationship among avian Escherichia coli strains and their genetic proximity with human pathogenic E. coli, Salmonela enterica, Yersinia enterocolitica and Proteus mirabilis, was determined by the DNA sequencing of the conserved 5' and 3'regions fliC gene (flagellin encoded gene). Among 30 commensal avian E. coli strains and 49 pathogenic avian E. coli strains (APEC), 24 commensal and 39 APEC strains harbored fliC gene with fragments size varying from 670bp to 1,900bp. The comparative analysis of these regions allowed the construction of a dendrogram of similarity possessing two main clusters: one compounded mainly by APEC strains and by H-antigens from human E. coli, and another one compounded by commensal avian E. coli strains, S. enterica, and by other H-antigens from human E. coli. Overall, this work demonstrated that fliC conserved regions may be associated with pathogenic clones of APEC strains, and also shows a great similarity among APEC and H-antigens of E. coli strains isolated from humans. These data, can add evidence that APEC strains can exhibit a zoonotic risk.
Resumo:
Foram caracterizados os sorotipos, o perfil de sensibilidade microbiana e os achados clínico-epidemiológicos em 53 linhagens do gênero Salmonella isoladas de 41 cães, nove equinos e três bovinos, acometidos por diferentes manifestações clínicas entre 1997 e 2007. Salmonella Typhimurium (45,3%), Salmonella enterica (22,6%), Salmonella Enteritidis (7,5%), Salmonella enterica subsp enterica 4,5,12i (5,7%), Salmonella Newport (5,7%), Salmonella Dublin (3,8%), Salmonella Agona (3,8%), Salmonella Glostrup (3,8%), Salmonella Saintpaul (1,8%) foram os sorotipos encontrados. Ciprofloxacina (100,0%), norfloxacina (100,0%) e gentamicina (100,0%) foram os antimicrobianos mais efetivos, enquanto a maior resistência das linhagens foi observada para ceftiofur (28,5%) e florfenicol (7,0%). As linhagens foram isoladas de animais com enterite, infecção do trato urinário, septicemia, piometra, pneumonia e conjuntivite. Ressalta-se para o predomínio do sorovar Typhimurium nas diferentes manifestações da salmonelose nos animais. Destaca-se, também, a identificação de sorotipos nos animais que também são observados em casos de salmonelose em humanos
Resumo:
Dois experimentos foram desenvolvidos para avaliar a eficiência de ácidos orgânicos frente a Salmonella enterica enterica sorovar Enteritidis (SE) e Minnesota (SM) em frangos. No primeiro experimento foram avaliados 3 tratamentos: T1 - ração adicionada de ácido orgânico, T2 - ração adicionada de ácido orgânico e ácido orgânico na água de bebida, T3 - grupo controle. Todos os animais foram inoculados com SE, via oral. A utilização de ácidos orgânicos na ração (T1) e na ração e na água (T2) diminuíram a excreção de Salmonella no papo e no ceco 7 dias pós inoculação com SE e houve redução de células CD3+ no jejuno dos frangos. No segundo experimento foram avaliados 4 tratamentos sendo T1 - controle, T2 - controle inoculado via oral com Salmonella Minnesota (SM), T3 - animais inoculados via oral com SM e ácidos orgânicos na ração e T4 - animais inoculados via oral com SM e ácidos orgânicos na ração e na água de bebida. Ácidos orgânicos a ração (T3) e na ração e na água (T4) reduziram a excreção de SM em papo de frangos de corte desafiados, 7 dias após inoculação. O uso de ácidos orgânicos na ração e na ração e na água foram mais eficientes em reduzir SE do que SM.
Resumo:
This paper reports on the development and validation of a loop-mediated isothermal amplification assay (LAMP) for the rapid and specific detection of Actinobacillus pleuropneumoniae (A. pleuropneumoniae). A set of six primers were designed derived from the dsbE-like gene of A.pleuropneumoniae and validate the assay using 9 A. pleuropneumoniae reference/field strains, 132 clinical isolates and 9 other pathogens. The results indicated that positive reactions were confirmed for all A. pleuropneumoniae strains and specimens by LAMP at 63ºC for 60 min and no cross-reactivity were observed from other non-A.pleuropneumoniae including Haemophilus parasuis, Escherichia coli, Pasteurella multocida, Bordetella bronchiseptica, Streptococcus suis, Salmonella enterica, Staphylococcus, porcine reproductive and respiratory syndrome virus (PRRSV), and Pseudorabies virus. The detection limit of the conventional PCR was 10² CFU per PCR test tube, while that of the LAMP was 5 copies per tube. Therefore, the sensitivity of LAMP was higher than that of PCR. Moreover, the LAMP assay provided a rapid yet simple test of A. pleuropneumoniae suitable for laboratory diagnosis and pen-side detection due to ease of operation and the requirement of only a regular water bath or heat block for the reaction.
Resumo:
The aim of this study was to research the occurrence of Salmonella spp. and Escherichia coli in feces samples of sparrows, as well as to identify the pathogenicity, cytotoxicity and sensitivity profile of the isolates to antimicrobial use. Two hundred and twenty eight sparrows were captured in eight farms. The in vitro pathogenicity test was performed by the isolates culture on congo red-magnesium oxalate Agar, whilst the in vivo pathogenicity test was performed in one day-old chicks. In order to study the cytotoxic effects of indicators, samples were inoculated into Vero cells. The results obtained for Escherichia coli isolation confirmed the presence of this microorganism in 30 (13.2%) of the evaluated samples. Out of those isolates, 10 (33.3%) presented the capacity of absorbing ongo red. As for in vivo pathogenicity a 68.0% of mortality rate of the evaluated samples was observed. Out of 20 isolates tested for cytotoxin production, none of them presented cytotoxic effect in the Vero cells. The Salmonella spp was isolated only in one sample (0.04%), and it was identified as Salmonella enterica subspecies houtenae. Results obtained through this research indicate the need for new studies to identify other virulence factors of E. coli samples and to delineate the phylogenetic profile of the isolates in order to establish a relation with colibacillosis outbreaks in chickens and broilers in the studied region, as well as to analyze the critical points in the aviculture productive chain to identify the source of Salmonella enterica subspecies houtenae.
Resumo:
Um surto de salmonelose em bezerros causado pela Salmonella enterica subsp. enterica sorovar Dublin é relatado em uma fazenda no município de Timon, Maranhão. De um total de 62 bezerros, 22 (35,5%) adoeceram e destes nove (40,9%) morreram. Os sinais clínicos incluíram febre, depressão, anorexia e, em alguns casos, sinais respiratórios, neurológicos, entéricos ou artrites, com curso clínico hiperagudo ou subagudo. As principais lesões macroscópicas foram hepatomegalia com áreas pálidas multifocais a coalescentes, esplenomegalia e líquido nas cavidades torácica e abdominal. Histologicamente foram observados granulomas paratifoides no fígado, rim e baço, além de trombos e agregados bacterianos em vasos sanguíneos de diversos órgãos. O surto foi controlado com a adoção de antibioticoterapia adequada aliada a correção de algumas medidas sanitárias na propriedade.
Resumo:
Origanum vulgare L. (oregano), Lamiaceae, essential oil has a variety of biological properties and its antimicrobial activity has received a renewed interest for use in food conservation. The aim of this study was to evaluate the interference of heating on the antimicrobial activity and chemical composition of O. vulgare essential oil. The antimicrobial activity of the essential oil kept at room temperature and exposed to different heating temperatures (60, 80, 100 and 120 °C during 1 hour) was evaluated by observing antimicrobial effectiveness at absolute concentration and determining MIC values by the solid medium diffusion procedure. The essential oil chemical composition analysis was performed by GC-MS. O. vulgare essential oil showed interesting antimicrobial activity on all assayed microbial strains (Candida albicans, C.krusei, C. tropicalis, Bacillus cereus, Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, Salmonella enterica, Serratia marcencens), noted by large growth inhibition zones (30-42 mm). Heating treatment showed no significant interference (p < 0.05) on the essential oil antimicrobial activity, noted by the development of microbial growth inhibition zones with similar or close diameters when evaluating the essential oil kept at room temperature and after exposure to different thermal treatments. MIC values oscillated between 10and 40 µL.mL-1 (20µL.mL-1 for most strains). However, no significant difference (p < 0.05) was noted among the MIC values found for the essential oil aliquots exposed to different temperatures. Moreover, heating did not significantly (p < 0.05) affect the chemical composition of O. vulgare essential oil. Monoterpenes, terpenic compounds and sesquiterpenes were found in the essential oil, with carvacrol (68.06-70.27%) and p-cymene (12.85-15.81%) being the compounds found in the highest amounts. These results showed the thermal stability and intense antimicrobial properties of O. vulgare essential oil and support its possible concomitant use with heating temperatures in order to reach microbial safety in foods.
Resumo:
Cinnamomum zeylanicum Blume, Lauraceae, has long been known for having many biological properties. This study aimed to identify the constituents of the essential oil from C. zeylanicum leaves using GC-MS and to assess its inhibitory effect on Salmonella enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa based on MIC and MBC determination and kill-time study. Eugenol (73.27%) was the most prevalent compound in the essential oil followed by trans-β-cariophyllene (5.38%), linalool (3.31%), and alcohol cinamic acetate (2.53%). The results showed an interesting antibacterial activity of the oil with MIC ranging from 1.25 to 10 µL.mL-1. MBC values were in the range of 20 - 80 µL.mL-1. A concentration of 10 and 40 µL.mL-1 of the essential oil caused a fast and steady decrease in viable cell count (2 to 5 log cycles) of all assayed strains along 24 hours. A concentration of 40 µL.mL-1 of the oil provided a total elimination of the initial inocula of S. aureus after 2 hours. These results show the possibility of regarding the essential oil from C. zeylanicum leaves as alternative sources of antimicrobial compounds to be applied in food conservation systems.