978 resultados para E-function genes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The avian circadian system is composed of the retina, the mammalian homolog region of the suprachiasmatic nucleus (SNC), and the pineal gland. The retina, itself, displays many rhythmic physiological events, such as movements of photoreceptor cells, opsin expression, retinal reisomerization, and melatonin and dopamine production and secretion. Altogether, these rhythmic events are coordinated to predict environmental changes in light conditions during the day, optimizing retina function. The authors investigated the expression pattern of the melanopsin genes Opn4x and Opn4m, the clock genes Clock and Per2, and the genes for the key enzymes N-Acetyltransferase and Tyrosine Hidroxylase in chicken embryo dispersed retinal cells. Primary cultures of chicken retina from 8-day-old embryos were kept in constant dark (DD), in 12-h light/12-h dark (12L:12D), in 12L:12D followed by DD, or in DD in the absence or presence of 100 mu M glutamate for 12 h. Total RNA was extracted throughout a 24-h span, every 3 h starting at zeitgeber time 0 (ZT0) of the 6th day, and submitted to reverse transcriptase-polymerase chain reaction (RT-PCR) followed by quantitative PCR (qPCR) for mRNA quantification. The data showed no rhythmic pattern of transcription for any gene in cells kept in DD. However under a light-dark cycle, Clock, Per2, Opn4m, N-Acetyltransferase, and Tyrosine Hydroxylase exhibited rhythmic patterns of transcription. In DD, 100 mu M glutamate was able to induce rhythmic expression of Clock, strongly inhibited the expression of Tyrosine Hydroxylase, and, only at some ZTs, of Opn4x and Opn4m. The neurotransmitter had no effect on Per2 and N-Acetyltransferase transcription. The authors confirmed the expression of the protein OPN4x by immunocytochemistry. These results suggest that chicken embryonic retinal cells contain a functional circadian clock, whose synchronization requires light-dark cycle or glutamate stimuli. (Author correspondence: amdlcast@ib.usp.br).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosome microdeletions or duplications are detected in 10-20% of patients with mental impairment and normal karyotypes. A few cases have been reported of mental impairment with microdeletions comprising tumor suppressor genes. By array-CGH we detected 4 mentally impaired individuals carrying de novo microdeletions sharing an overlapping segment of similar to 180 kb in 17p13.1. This segment encompasses 18 genes, including 3 involved in cancer, namely KCTD11/REN, DLG4/PSD95, and GPS2. Furthermore, in 2 of the patients, the deletions also included TP53, the most frequently inactivated gene in human cancers. The 3 tumor suppressor genes KCTD11, DLG4, and GPS2, in addition to the GABARAP gene, have a known or suspected function in neuronal development and are candidates for causing mental impairment in our patients. Among our 4 patients with deletions in 17p13.1, 3 were part of a Brazilian cohort of 300 mentally retarded individuals, suggesting that this segment may be particularly prone to rearrangements and appears to be an important cause (similar to 1%) of mental retardation. Further, the constitutive deletion of tumor suppressor genes in these patients, particularly TP53, probably confers a significantly increased lifetime risk for cancer and warrants careful oncological surveillance of these patients. Constitutional chromosome deletions containing tumor suppressor genes in patients with mental impairment or congenital abnormalities may represent an important mechanism linking abnormal phenotypes with increased risks of cancer. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase-1 (HO-1) has a microsatellite polymorphism based on the number of guanosine-thymidine nucleotide repeats (GT) repeats that regulates expression levels and could have an impact on organ survival post-injury. We correlated HO-1 polymorphism with renal graft function. The HO-1 gene was sequenced (N = 181), and the allelic repeats were divided into subclasses: short repeats (S) (< 27 repeats) and long repeats (L) (>= 27 repeats). A total of 47.5% of the donors carried the S allele. The allograft function was statistically improved six months, two and three yr after transplantation in patients receiving kidneys from donors with an S allele. For the recipients carrying the S allele (50.3%), the allograft function was also better throughout the follow-up, but reached statistical significance only three yr after transplantation (p = 0.04). Considering only those patients who had chronic allograft nephropathy (CAN; 74 of 181), allograft function was also better in donors and in recipients carrying the S allele, two and three yr after transplantation (p = 0.03). Recipients of kidney transplantation from donors carrying the S allele presented better function even in the presence of CAN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apolipoproteínas constituem a parte proteica das lipoproteínas e de uma maneira geral desempenham papéis como proporcionar estabilidade estrutural, solubilizar lipídeos altamente hidrofóbicos, servir como ligantes a receptores ou agir como co-fatores para enzimas envolvidas no metabolismo. Diversos estudos têm mostrado que a variabilidade dos genes que codificam estas proteínas podem influenciar os níveis lipídicos em diversas populações. A variabilidade da apo A-IV também foi associada com variáveis antropométricas. Nesta investigação foram analisados 8 RFLPs nos genes das apolipoproteínas C-I (HpaI), C-II (AvaII), C-III (SacI, FokI e MspI) e A-IV (XbaI, HinfI e PvuII). A amostra foi composta por 391 indivíduos caucasóides de Porto Alegre (RS) e dados sobre hábitos de vida, dosagens lipídicas e medidas antropométricas foram obtidas para cada indivíduo. Os fragmentos de interesse de cada gene foram amplificados por PCR e os genótipos foram identificados por eletroforese em géis de agarose ou poliacrilamida corados com brometo de etídio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sequencing of the genome of Chromobacterium violaceum identified one single circular chromosome of 4.8 Mb, in which approximately 40% of the founded ORFs are classified as hypothetical conserved or hypothetical. Some genic regions of biotechnological and biological interest had been characterized, e. g., environmental detoxification and DNA repair genes, respectively. Given this fact, the aim of this work was to identify genes of C. violaceum related to stress response, as the ones involved with mechanisms of DNA repair and/or genomic integrity maintenance. For this, a genomic library of C. violaceum was built in Escherichia coli strain DH10B (RecA-), in which clones were tested to UVC resistance, resulting in five candidates clones. In the PLH6A clone were identified four ORFs (CV_3721 to 3724). Two ORFs, CV_3722 and CV_3724, were subcloned and a synergic complementation activity was observed. The occurrence of an operon was confirmed using cDNA from C. violaceum in a RT-PCR assay. Further, it was observed the induction of the operon after the treatment with UVC. Thus, this operon was related to the stress response in C. violaceum. The mutagenesis assay with rifampicin after the treatment with UVC light showed high frequency of mutagenicity for the ORF CV_3722 (Pol III δ subunit). In this way, we propose that the C. violaceum δ subunit can act in DH10B in the translesion synthesis using Pol IV in a RecA independent-manner pathway. In growth curve assays other four clones (PLE1G, PLE7B, PLE10B and PLE12H) were able to complement the function at the dose 5 J/m2 and in mutagenicity assays PLE7B, PLE10B and PLE12H showed frequencies of mutation with significant differences upon the control (DH10B), demonstrating that in some way they are involved with the stress response in C. violaceum. These clones appear to be interrelated, probably regulated by a messenger molecule (eg., nucleotide c-di-GMP) and/or global regulatory molecule (eg., σS subunit of RNA polymerase).The results obtained contribute for a better genetic knowledge of this specie and its response mechanisms to environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ± 118 bp) and 127.563 sequences (352 ± 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A collection of 237,954 sugarcane ESTs was examined in search of signal transduction genes. Over 3,500 components involved in several aspects of signal transduction, transcription, development, cell cycle, stress responses and pathogen interaction were compiled into the Sugarcane Signal Transduction (SUCAST) Catalogue. Sequence comparisons and protein domain analysis revealed 477 receptors, 510 protein kinases, 107 protein phosphatases, 75 small GTPases, 17 G-proteins, 114 calcium and inositol metabolism proteins, and over 600 transcription factors. The elements were distributed into 29 main categories subdivided into 409 sub-categories. Genes with no matches in the public databases and of unknown function were also catalogued. A cDNA microarray was constructed to profile individual variation of plants cultivated in the field and transcript abundance in six plant organs (flowers, roots, leaves, lateral buds, and 1(st) and 4(th) internodes). From 1280 distinct elements analyzed, 217 (17%) presented differential expression in two biological samples of at least one of the tissues tested. A total of 153 genes (12%) presented highly similar expression levels in all tissues. A virtual profile matrix was constructed and the expression profiles were validated by real-time PCR. The expression data presented can aid in assigning function for the sugarcane genes and be useful for promoter characterization of this and other economically important grasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The northeastern region is responsible to 14.32% of sugarcane national production. This lowered contribution is due to edaphoclimatic condition. Flowering is a vital process to plant which consumes lots of energy and it culminates in a process called isoporization. This one can give in a decreasing of 60% on alcohol and water production. It may consider that cropped sugarcane has a hibrid with octaploid genome, there are varieties with a flowering standard until of non flowering. Using this natural genetic potential on different croppings of sugarcane, the aim of this work was to understand as this process occurs by the usage of subtractive approaches. The total RNA was extracted using Trizol of peaks of merisematics of croppings with induced flowering and other with late flowering. From this total RNA were built four subtractives libraries (B1- induced early flowering subtracted on late flowering not induced; B2- late flowering not induced subtracted induced early flowering; B3- induced early flowering subtracted of not induced early flowering; B02- not induced early flowering subtracted from induced early flowering) using kits Super Smart cDNA synthesis and BD Clontech kit select cDNA subtraction (Clontech). This material was clone don vector pGEM T-easy(Promega) and changed in competent cells of E.coli DH10B. Given analysis sequence was carried out a program BLASTn against database of NCBI and genome of Arabidopsis thaliana, rice and maize. Clones were grouped in 9 different classes according to function. Some factors already related as couples of flower induction were identified at different libraries. And grouped proteins with cell cycle and it controls were presents, mainly kinases proteins. Related factors to proteic sinthesis, metabolism, defence, cell communication were also given in both libraries .Some identified genes did not show similarity on database or homology with hypothesis function, and it can represents new genes to be deposited in international database. These results offers that some identified on sugarcane, classified as on factors classes, cell cycle and cell communication, trough unknown genes, can be linked with genetic changing to the flowering process found in the northeastern region

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deletion of the Saccharomyces cerevisiae gene YOL008W, here referred to as COQ10, elicits a respiratory defect as a result of the inability of the mutant to oxidize NADH and succinate. Both activities are restored by exogenous coenzyme Q(2). Respiration is also partially rescued by COQ2, COQ7, or COQ8/ABC1, when these genes are present in high copy. Unlike other coq mutants, all of which lack Q(6), the coq10 mutant has near normal amounts of Q(6) in mitochondria. Coq10p is widely distributed in bacteria and eukaryotes and is homologous to proteins of the aromatic-rich protein family Pfam03654 and to members of the START domain superfamily that have a hydrophobic tunnel implicated in binding lipophilic molecules such as cholesterol and polyketides. Analysis of coenzyme Q in polyhistidine-tagged Coq10p purified from mitochondria indicates the presence 0.032-0.034 mol of Q(6)/mol of protein. We propose that Coq10p is a Q(6)-binding protein and that in the coq10 mutant Q(6) it is not able to act as an electron carrier, possibly because of improper localization.