687 resultados para E Breitgrund, Flensburg Fjord


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the early 2000s the Greenland Ice Sheet experienced the largest ice-mass loss of the instrumental record, largely as a result of the acceleration, thinning and retreat of large outlet glaciers in West and southeast Greenland. The quasi-simultaneous change in the glaciers suggests a common climate forcing. Increasing air and ocean temperatures have been indicated as potential triggers. Here, we present a record of calving activity of Helheim Glacier, East Greenland, that extends back to about AD 1890, based on an analysis of sedimentary deposits from Sermilik Fjord, where Helheim Glacier terminates. Specifically, we use the annual deposition of and grains as a proxy for iceberg discharge. Our record reveals large fluctuations in calving rates, but the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity coincides with a relatively strong influence of Atlantic water and a lower influence of polar water on the shelf off Greenland, as well as with warm summers and the negative phase of the North Atlantic Oscillation. Our analysis provides evidence that Helheim Glacier responds to short-term fluctuations of large-scale oceanic and atmospheric conditions, on timescales of 3-10 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HydroC® CO2 sensor was deployed from a pontoon at the waterfront of the GEOMAR west shore building into Kiel Fjord, Western Baltic Sea (Kiel, Germany; 54°19'48.78"N, 010° 8'59.44"E). Since the pontoon is floating the deployment depth of the sensor was constant at 1m. Data of three deployment intervals are published here: 1) July 2012 - December 2012 2) April 2013 - June 2013 3) November 2013 - January 2015 Data are processed and corrected, for documentation and graphical overview see further details.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate of Chilean Patagonia is strongly influenced by the southern westerlies, which control the amount and latitudinal distribution of precipitation in the southern Andes. In austral summer, the Southern Westerly Wind Belt (SWWB) is restricted to the high latitudes. It expands northward in winter, which results in a strong precipitation seasonality between 35 and 45°S. Here, we present a new precipitation seasonality proxy record from Quitralco fjord (46°S), where relatively small latitudinal shifts in the SWWB result in large changes in precipitation seasonality. Our 1400 yr record is based on sedimentological and geochemical data obtained on a sediment core collected in front of a small river that drains the Patagonian Andes, which makes this site particularly sensitive to changes in river discharge. Our results show Fe/Al and Ti/Al values that are low between 600 and 1200 CE, increasing at 1200-1500 CE, and high between 1500 and 1950 CE. The increasing Fe/Al and Ti/Al values reflect a decrease in mean sediment grain-size from 30 to 20 µm, which is interpreted as a decrease in seasonal floods resulting from an equatorward shift of the SWWB. Our results suggest that, compared to present-day conditions, the SWWB was located in a more poleward position before 1200 CE. It gradually shifted towards the equator in 1200-1500 CE, where it remained in a sustained position until 1950 CE. The comparison of our record with published regional sea surface temperature (SST) reconstructions for the late Holocene shows that equatorward shifts in the SWWB are systematically coeval with decreasing SSTs and vice versa, which resembles fluctuations over glacial-interglacial timescales. We argue that the synchronicity between SST and SWWB changes during the last 1400 years represents the response of the SWWB to temperature changes in the Southern Hemisphere.