923 resultados para Dynamic storage allocation (Computer science)
Resumo:
Part 10: Sustainability and Trust
Resumo:
Part 6: Engineering and Implementation of Collaborative Networks
Resumo:
In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system.
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
Recent technological advancements have played a key role in seamlessly integrating cloud, edge, and Internet of Things (IoT) technologies, giving rise to the Cloud-to-Thing Continuum paradigm. This cloud model connects many heterogeneous resources that generate a large amount of data and collaborate to deliver next-generation services. While it has the potential to reshape several application domains, the number of connected entities remarkably broadens the security attack surface. One of the main problems is the lack of security measures to adapt to the dynamic and evolving conditions of the Cloud-To-Thing Continuum. To address this challenge, this dissertation proposes novel adaptable security mechanisms. Adaptable security is the capability of security controls, systems, and protocols to dynamically adjust to changing conditions and scenarios. However, since the design and development of novel security mechanisms can be explored from different perspectives and levels, we place our attention on threat modeling and access control. The contributions of the thesis can be summarized as follows. First, we introduce a model-based methodology that secures the design of edge and cyber-physical systems. This solution identifies threats, security controls, and moving target defense techniques based on system features. Then, we focus on access control management. Since access control policies are subject to modifications, we evaluate how they can be efficiently shared among distributed areas, highlighting the effectiveness of distributed ledger technologies. Furthermore, we propose a risk-based authorization middleware, adjusting permissions based on real-time data, and a federated learning framework that enhances trustworthiness by weighting each client's contributions according to the quality of their partial models. Finally, since authorization revocation is another critical concern, we present an efficient revocation scheme for verifiable credentials in IoT networks, featuring decentralization, demanding minimum storage and computing capabilities. All the mechanisms have been evaluated in different conditions, proving their adaptability to the Cloud-to-Thing Continuum landscape.
Resumo:
Introduction: Internet users are increasingly using the worldwide web to search for information relating to their health. This situation makes it necessary to create specialized tools capable of supporting users in their searches. Objective: To apply and compare strategies that were developed to investigate the use of the Portuguese version of Medical Subject Headings (MeSH) for constructing an automated classifier for Brazilian Portuguese-language web-based content within or outside of the field of healthcare, focusing on the lay public. Methods: 3658 Brazilian web pages were used to train the classifier and 606 Brazilian web pages were used to validate it. The strategies proposed were constructed using content-based vector methods for text classification, such that Naive Bayes was used for the task of classifying vector patterns with characteristics obtained through the proposed strategies. Results: A strategy named InDeCS was developed specifically to adapt MeSH for the problem that was put forward. This approach achieved better accuracy for this pattern classification task (0.94 sensitivity, specificity and area under the ROC curve). Conclusions: Because of the significant results achieved by InDeCS, this tool has been successfully applied to the Brazilian healthcare search portal known as Busca Saude. Furthermore, it could be shown that MeSH presents important results when used for the task of classifying web-based content focusing on the lay public. It was also possible to show from this study that MeSH was able to map out mutable non-deterministic characteristics of the web. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
This work extends a previously presented refined sandwich beam finite element (FE) model to vibration analysis, including dynamic piezoelectric actuation and sensing. The mechanical model is a refinement of the classical sandwich theory (CST), for which the core is modelled with a third-order shear deformation theory (TSDT). The FE model is developed considering, through the beam length, electrically: constant voltage for piezoelectric layers and quadratic third-order variable of the electric potential in the core, while meclianically: linear axial displacement, quadratic bending rotation of the core and cubic transverse displacement of the sandwich beam. Despite the refinement of mechanical and electric behaviours of the piezoelectric core, the model leads to the same number of degrees of freedom as the previous CST one due to a two-step static condensation of the internal dof (bending rotation and core electric potential third-order variable). The results obtained with the proposed FE model are compared to available numerical, analytical and experimental ones. Results confirm that the TSDT and the induced cubic electric potential yield an extra stiffness to the sandwich beam. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Leakage reduction in water supply systems and distribution networks has been an increasingly important issue in the water industry since leaks and ruptures result in major physical and economic losses. Hydraulic transient solvers can be used in the system operational diagnosis, namely for leak detection purposes, due to their capability to describe the dynamic behaviour of the systems and to provide substantial amounts of data. In this research work, the association of hydraulic transient analysis with an optimisation model, through inverse transient analysis (ITA), has been used for leak detection and its location in an experimental facility containing PVC pipes. Observed transient pressure data have been used for testing ITA. A key factor for the success of the leak detection technique used is the accurate calibration of the transient solver, namely adequate boundary conditions and the description of energy dissipation effects since PVC pipes are characterised by a viscoelastic mechanical response. Results have shown that leaks were located with an accuracy between 4-15% of the total length of the pipeline, depending on the discretisation of the system model.
Resumo:
This paper presents a strategy for the solution of the WDM optical networks planning. Specifically, the problem of Routing and Wavelength Allocation (RWA) in order to minimize the amount of wavelengths used. In this case, the problem is known as the Min-RWA. Two meta-heuristics (Tabu Search and Simulated Annealing) are applied to take solutions of good quality and high performance. The key point is the degradation of the maximum load on the virtual links in favor of minimization of number of wavelengths used; the objective is to find a good compromise between the metrics of virtual topology (load in Gb/s) and of the physical topology (quantity of wavelengths). The simulations suggest good results when compared to some existing in the literature.
Resumo:
Wireless Sensor Networks (WSNs) have a vast field of applications, including deployment in hostile environments. Thus, the adoption of security mechanisms is fundamental. However, the extremely constrained nature of sensors and the potentially dynamic behavior of WSNs hinder the use of key management mechanisms commonly applied in modern networks. For this reason, many lightweight key management solutions have been proposed to overcome these constraints. In this paper, we review the state of the art of these solutions and evaluate them based on metrics adequate for WSNs. We focus on pre-distribution schemes well-adapted for homogeneous networks (since this is a more general network organization), thus identifying generic features that can improve some of these metrics. We also discuss some challenges in the area and future research directions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
This paper proposes a simple high-level programming language, endowed with resources that help encoding self-modifying programs. With this purpose, a conventional imperative language syntax (not explicitly stated in this paper) is incremented with special commands and statements forming an adaptive layer specially designed with focus on the dynamical changes to be applied to the code at run-time. The resulting language allows programmers to easily specify dynamic changes to their own program`s code. Such a language succeeds to allow programmers to effortless describe the dynamic logic of their adaptive applications. In this paper, we describe the most important aspects of the design and implementation of such a language. A small example is finally presented for illustration purposes.
Resumo:
The paper presents the development of a mechanical actuator using a shape memory alloy with a cooling system based on the thermoelectric effect (Seebeck-Peltier effect). Such a method has the advantage of reduced weight and requires a simpler control strategy as compared to other forced cooling systems. A complete mathematical model of the actuator was derived, and an experimental prototype was implemented. Several experiments are used to validate the model and to identify all parameters. A robust and nonlinear controller, based on sliding-mode theory, was derived and implemented. Experiments were used to evaluate the actuator closed-loop performance, stability, and robustness properties. The results showed that the proposed cooling system and controller are able to improve the dynamic response of the actuator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.