992 resultados para Dynamic conditional score
The acquisition of movement skills: Practice enhances the dynamic stability of bimanual coordination
Resumo:
During bimanual movements, two relatively stable inherent patterns of coordination (in-phase and anti-phase) are displayed (e.g., Kelso, Am. J. Physiol. 246 (1984) R1000). Recent research has shown that new patterns of coordination can be learned. For example, following practice a 90 degrees out-of-phase pattern can emerge as an additional, relatively stable, state (e.g., Zanone & Kelso, J. Exp. Psychol.: Human Performance and Perception 18 (1992) 403). On this basis, it has been concluded that practice leads to the evolution and stabilisation of the newly learned pattern and that this process of learning changes the entire attractor layout of the dynamic system. A general feature of such research has been to observe the changes of the targeted pattern's stability characteristics during training at a single movement frequency. The present study was designed to examine how practice affects the maintenance of a coordinated pattern as the movement frequency is scaled. Eleven volunteers were asked to perform a bimanual forearm pronation-supination task. Time to transition onset was used as an index of the subjects' ability to maintain two symmetrically opposite coordinated patterns (target task - 90 degrees out-of-phase - transfer task - 270 degrees out-of-phase). Their ability to maintain the target task and the transfer task were examined again after five practice sessions each consisting of 15 trials of only the 90 degrees out-of-phase pattern. Concurrent performance feedback (a Lissajous figure) was available to the participants during each practice trial. A comparison of the time to transition onset showed that the target task was more stable after practice (p = 0.025). These changes were still observed one week (p = 0.05) and two months (p = 0.075) after the practice period. Changes in the stability of the transfer task were not observed until two months after practice (p = 0.025). Notably, following practice, transitions from the 90 degrees pattern were generally to the anti-phase (180 degrees) pattern, whereas, transitions from the 270 degrees pattern were to the 90 degrees pattern. These results suggest that practice does improve the stability of a 90 degrees pattern, and that such improvements are transferable to the performance of the unpractised 270 degrees pattern. In addition, the anti-phase pattern remained more stable than the practised 90 degrees pattern throughout. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.
Resumo:
Primary olfactory neurons are located in the olfactory neuroepithelium lining the nasal cavity. Their axons converge and form glomeruli with the dendrites of second-order neurons in the olfactory bulb. The molecular basis of primary olfactory axon guidance, targeting and subsequent arborisation is largely unknown. In this study we examined the spatio-temporal expression of the Eph receptor EphB2 and its ligands, ephrin-B1 and ephrin-B2, during development of the rat primary olfactory system. Unlike in other regions of the nervous system where receptor and ligand expression patterns are usually non-overlapping, EphB2, ephrin-B1 and ephrin-B2 were all expressed by primary and second-order olfactory neurons. In the embryonic animal we found that these three proteins had distinct and different expression patterns. EphB2 was first expressed at E18.5 by the perikarya of primary olfactory neurons. In contrast, ephrin-B1 was expressed from E13.5 and was localised to the axons of these cells up to E18.5 but was then restricted to the perikarya. Ephrin-B2, however, was expressed by olfactory ensheathing cells. EphB2, ephrin-B1 and ephrin-B2 were also expressed in the prenatal olfactory bulb and were restricted to the perikarya of mitral cells. In the post-natal olfactory bulb there was a shift in the localisation of both EphB2 and ephrin-B1 to the dendritic arborisations of mitral cells. The dynamic and tightly regulated spatio-temporal expression patterns of EphB2, ephrin-B1 and ephrin-B2 by specific olfactory cell populations suggest that these molecules have the potential to regulate important developmental events in the olfactory system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The study to be presented is the first to use a new physiological device, the electromagnetic articulograph, to assess articulatory dysfunction in children with acquired brain injury. Two children with dysarthria subsequent to acquired brain injury participated in the study. One child, a female aged 12 years 9 months exhibited a mild-moderate ataxic dysarthria following traumatic head injury while the other, a male aged 13 years 10 months, demonstrated a moderate-severe flaccid-ataxic dysarthria also following traumatic head injury. The speed and accuracy of their tongue movements was assessed using the Carstens AG100 electromagnetic articulograph. Movement trajectories together with a range of quantitative kinematic parameters were estimated during performance of ten repetitions of the lingual consonants /t, s, k/ and consonant cluster /kl/ in the word initial position of single syllable words. A group of ten non-neurologically impaired children served as controls. Examination of the kinematic parameters, including movement trajectories, velocity, acceleration, deceleration, distance travelled and duration of movement, revealed differences in the speed and accuracy of the tongue movements in both children with acquired brain injury compared to those produced by the non-neurologically impaired controls. The results are discussed in relation to contemporary theories of the effects of acquired brain injury on neuromuscular function. The implications of the findings for the treatment of articulatory dysfunction in children with motor speech disorders associated with acquired brain injury are highlighted.
Resumo:
We have studied the spatial dynamics of Sry transcription in the genital ridges of mouse embryos. We find that Sry is expressed in a dynamic wave that emanates from the central and/or anterior regions, extends subsequently to both poles, and ends in the caudal pole. This dynamism may explain the relative positioning of ovarian and testicular tissue seen in ovotestes in mice. Since direct regulatory targets of SRY ought to be expressed in a corresponding or complimentary wave, our observations pave the way for identification of target genes. Sry is expressed in internal cells but not in coelomic surface epithelial cells, indicating that its effect on proliferation of surface cells is achieved non-cell-autonomously. The cellular dynamism of Sry expression revealed in this study thus provides important insights into both the cellular and molecular mode of action of SRY, and how perturbations in Sry expression can lead to anomalies of sexual development. (C) 2001 Wiley-Liss, Inc.
Resumo:
We show that by making conditional measurements on the Einstein-Podolsky-Rosen (EPR) squeezed vacuum [T. Opatrny, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61, 032302 (2000)], one can improve the efficacy of teleportation for both the position-difference, momentum-sum, and number-difference, phase-sum continuous variable teleportation protocols. We investigate the relative abilities of the standard and conditional EPR states, and show that by conditioning we can improve the fidelity of teleportation of coherent states from below to above the (F) over bar =2/3 boundary, thereby achieving unambiguously quantum teleportation.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
We investigated the effects of conditional stimulus fear-relevance and of instructed extinction on human Pavlovian conditioning as indexed by electrodermal responses and verbal ratings of conditional stimulus unpleasantness. Half of the participants (n = 64) were trained with pictures of snakes and spiders (fear-relevant) as conditional stimuli, whereas the others were trained with pictures of flowers and mushrooms (fear-irrelevant) in a differential aversive Pavlovian conditioning procedure. Half of the participants in each group were instructed after the completion of acquisition that no more unconditional stimuli were to be presented. Extinction of differential electrodermal responses required more trials after training with fear-relevant pictures. Moreover, there was some evidence that verbal instructions did not affect extinction of second interval electrodermal responses to fear-relevant pictures. However, neither fear-relevance nor instructions affected the changes in rated conditional stimulus pleasantness. This dissociation across measures is interpreted as reflecting renewal of Pavlovian learning.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
The widespread adoption of soil conservation technologies by farmers (notably contour hedgerows) observed in Guba, Cebu City, Philippines, is not often observed elsewhere In the country. Adoption of these technologies was because of the interaction of such phenomena as site-specific factors, appropriate extension systems, and technologies. However, lack of hedgerow maintenance, decreasing hedgerow quality, and disappearance of hedgerows raised concerns about sustainability. The dynamic nature of upland farming systems suggests the need for a location-specific farming system development framework, which provides farmers with ongoing extension for continual promotion of appropriate conservation practices.
Quantification and assessment of fault uncertainty and risk using stochastic conditional simulations
Resumo:
This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.