884 resultados para Dunkl Kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of disease clusters in space or space-time is of vital importance for public health policy and action. In the case of methicillin-resistant Staphylococcus aureus (MRSA), it is particularly important to distinguish between community and health care-associated infections, and to identify reservoirs of infection. 832 cases of MRSA in the West Midlands (UK) were tested for clustering and evidence of community transmission, after being geo-located to the centroids of UK unit postcodes (postal areas roughly equivalent to Zip+4 zip code areas). An age-stratified analysis was also carried out at the coarser spatial resolution of UK Census Output Areas. Stochastic simulation and kernel density estimation were combined to identify significant local clusters of MRSA (p<0.025), which were supported by SaTScan spatial and spatio-temporal scan. In order to investigate local sampling effort, a spatial 'random labelling' approach was used, with MRSA as cases and MSSA (methicillin-sensitive S. aureus) as controls. Heavy sampling in general was a response to MRSA outbreaks, which in turn appeared to be associated with medical care environments. The significance of clusters identified by kernel estimation was independently supported by information on the locations and client groups of nursing homes, and by preliminary molecular typing of isolates. In the absence of occupational/ lifestyle data on patients, the assumption was made that an individual's location and consequent risk is adequately represented by their residential postcode. The problems of this assumption are discussed, with recommendations for future data collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new entropy measure known as kernel entropy (KerEnt), which quantifies the irregularity in a series, was applied to nocturnal oxygen saturation (SaO 2) recordings. A total of 96 subjects suspected of suffering from sleep apnea-hypopnea syndrome (SAHS) took part in the study: 32 SAHS-negative and 64 SAHS-positive subjects. Their SaO 2 signals were separately processed by means of KerEnt. Our results show that a higher degree of irregularity is associated to SAHS-positive subjects. Statistical analysis revealed significant differences between the KerEnt values of SAHS-negative and SAHS-positive groups. The diagnostic utility of this parameter was studied by means of receiver operating characteristic (ROC) analysis. A classification accuracy of 81.25% (81.25% sensitivity and 81.25% specificity) was achieved. Repeated apneas during sleep increase irregularity in SaO 2 data. This effect can be measured by KerEnt in order to detect SAHS. This non-linear measure can provide useful information for the development of alternative diagnostic techniques in order to reduce the demand for conventional polysomnography (PSG). © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - Modelling the interaction between potentially antigenic peptides and Major Histocompatibility Complex (MHC) molecules is a key step in identifying potential T-cell epitopes. For Class II MHC alleles, the binding groove is open at both ends, causing ambiguity in the positional alignment between the groove and peptide, as well as creating uncertainty as to what parts of the peptide interact with the MHC. Moreover, the antigenic peptides have variable lengths, making naive modelling methods difficult to apply. This paper introduces a kernel method that can handle variable length peptides effectively by quantifying similarities between peptide sequences and integrating these into the kernel. Results - The kernel approach presented here shows increased prediction accuracy with a significantly higher number of true positives and negatives on multiple MHC class II alleles, when testing data sets from MHCPEP [1], MCHBN [2], and MHCBench [3]. Evaluation by cross validation, when segregating binders and non-binders, produced an average of 0.824 AROC for the MHCBench data sets (up from 0.756), and an average of 0.96 AROC for multiple alleles of the MHCPEP database. Conclusion - The method improves performance over existing state-of-the-art methods of MHC class II peptide binding predictions by using a custom, knowledge-based representation of peptides. Similarity scores, in contrast to a fixed-length, pocket-specific representation of amino acids, provide a flexible and powerful way of modelling MHC binding, and can easily be applied to other dynamic sequence problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Quantified Autoepistemic Logic is axiomatized in a monotonic Modal Quantificational Logic whose modal laws are slightly stronger than S5. This Quantified Autoepistemic Logic obeys all the laws of First Order Logic and its L predicate obeys the laws of S5 Modal Logic in every fixed-point. It is proven that this Logic has a kernel not containing L such that L holds for a sentence if and only if that sentence is in the kernel. This result is important because it shows that L is superfluous thereby allowing the ori ginal equivalence to be simplified by eliminating L from it. It is also shown that the Kernel of Quantified Autoepistemic Logic is a generalization of Quantified Reflective Logic, which coincides with it in the propositional case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A40, 45B05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 44A35; 42A75; 47A16, 47L10, 47L80

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35E45

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 42B10

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: Primary 30C40