975 resultados para Ductus arteriosus, patent


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to test the hypothesis that ear oximetry immediately after the release of a sustained Valsalva maneuver accurately detects patent foramen ovale (PFO). One hundred sixty-five scuba divers underwent transesophageal echocardiography (TEE; reference method) for PFO assessment. Ear oximetry of the right earlobe was performed in a different room within a time frame of 2 hours before or after TEE. The subject and the oximetry operator were unaware of the results of TEE. Oxygen saturation (SO(2)) measurements were obtained at baseline and during the release phase of 4 Valsalva maneuvers within 10 minutes, and the average SO(2) change (SO(2) at baseline minus SO(2) at Valsalva release) was determined as the primary study end point. One hundred seventeen divers had no PFO, and 48 (29%) had PFO by TEE (mean age 39 ± 8 years). The average SO(2) change was 0.79 ± 1.13% (i.e., a slight absolute SO(2) decrease in response to the Valsalva maneuver) in the group without PFO and 1.67 ± 1.19% in the PFO group (p <0.0001). Using receiver-operating characteristic curve analysis, a PFO as defined by TEE could be detected at a threshold of a Valsalva-induced decrease in SO(2) of ≥0.825 percentage points in comparison to baseline (sensitivity 0.756, specificity 0.706, area under the receiver-operating characteristic curve 0.763, p <0.0001, negative predictive value 0.882). In conclusion, the entirely noninvasive method of ear oximetry in response to repetitive Valsalva maneuvers is accurate and useful as a screening method for the detection of a PFO, as shown in this study of divers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stroke is the most debilitating cardiovascular event. It has a variety of causes that may be present simultaneously. In young or otherwise healthy people, the search for a patent foramen ovale (PFO) has become standard. In stroke of the elderly, atherosclerosis and atrial fibrillation are in the foreground but the PFO should not be ignored. The risk of a PFO-related stroke over time is controversial and so is its prevention by device closure. The association of proximal aortic plaques in arteries subtending the brain and stroke is considered strong, ignoring that it is as putative as that of the PFO. Statins can prevent progression of such plaques. Antiplatelet agents in asymptomatic and surgical endarterectomy in symptomatic patients or highly ulcerated lesions are the treatment of choice. Stenting with protection devices was shown competitive in selected patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iatrogenic atrial septal defects are described in 2 patients. They occurred after implantation of Amplatzer occluders to close a patent foramen ovale. While device erosions to the extra-atrial space have been described, erosion induced atrial septal defects are a new medical entity. They may be fairly common in the situation of an atrial septal aneurysm whipping the rim of the device incessantly. They are clinically silent and benign and require echocardiography for detection. A second device solved the problem in the cases described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two young women with angiographically normal coronary arteries suffered an acute myocardial infarction. Both were found to have a patent foramen ovale (PFO), the likely pathway of a paradoxical embolus causing the infarction. The PFOs were diagnosed and closed percutaneously with an Amplatzer PFO Occluder during the emergency coronary angiography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONTEXT: Individuals susceptible to high-altitude pulmonary edema (HAPE) are characterized by exaggerated pulmonary hypertension and arterial hypoxemia at high altitude, but the underlying mechanism is incompletely understood. Anecdotal evidence suggests that shunting across a patent foramen ovale (PFO) may exacerbate hypoxemia in HAPE. OBJECTIVE: We hypothesized that PFO is more frequent in HAPE-susceptible individuals and may contribute to more severe arterial hypoxemia at high altitude. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of 16 HAPE-susceptible participants and 19 mountaineers resistant to this condition (repeated climbing to peaks above 4000 m and no symptoms of HAPE). MAIN OUTCOME MEASURES: Presence of PFO determined by transesophageal echocardiography, estimated pulmonary artery pressure by Doppler echocardiography, and arterial oxygen saturation measured by pulse oximetry in HAPE-susceptible and HAPE-resistant participants at low (550 m) and high altitude (4559 m). RESULTS: The frequency of PFO was more than 4 times higher in HAPE-susceptible than in HAPE-resistant participants, both at low altitude (56% vs 11%, P = .004; odds ratio [OR], 10.9 [95% confidence interval {CI}, 1.9-64.0]) and high altitude (69% vs 16%, P = .001; OR, 11.7 [95% CI, 2.3-59.5]). At high altitude, mean (SD) arterial oxygen saturation prior to the onset of pulmonary edema was significantly lower in HAPE-susceptible participants than in the control group (73% [10%] vs 83% [7%], P = .001). Moreover, in the HAPE-susceptible group, participants with a large PFO had more severe arterial hypoxemia (65% [6%] vs 77% [8%], P = .02) than those with smaller or no PFO. CONCLUSIONS: Patent foramen ovale was roughly 4 times more frequent in HAPE-susceptible mountaineers than in participants resistant to this condition. At high altitude, HAPE-susceptible participants with a large PFO had more severe hypoxemia. We speculate that at high altitude, a large PFO may contribute to exaggerated arterial hypoxemia and facilitate HAPE.