953 resultados para Drone aircraft.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes recent developments with the Aircraft Accident Statistics and Knowledge (AASK) database. The AASK database is a repository of survivor accounts from aviation accidents developed by the Fire Safety Engineering Group of the University of Greenwich with support from the UK CAA. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. Access to the latest version of the database (AASK V3.0) is available over the Internet. AASK consists of information derived from both passenger and cabin crew interviews, information concerning fatalities and basic accident details. Also provided with AASK is the Seat Plan Viewer that graphically displays the starting locations of all the passengers - both survivors and fatalities - as well as the exits used by the survivors. Data entered into the AASK database is extracted from the transcripts supplied by the National Transportation Safety Board in the US and the Air Accident Investigation Branch in the UK. The quality and quantity of the data was very variable ranging from short summary reports of the accidents to boxes of individual accounts from passengers, crew and investigators. Data imported into AASK V3.0 includes information from 55 accidents and individual accounts from 1295 passengers and 110 crew.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the influence of exit separation, exit availability and seating configuration on aircraft evacuation efficiency and evacuation time. The purpose of this analysis is to explore how these parameters influence the 60 foot exit separation requirement found in aircraft certification rules. The analysis makes use of the airEXODUS evacuation model and is based on a typical wide-body aircraft cabin section involving two pairs of Type-A exits located at either end of the section with a maximum permissible loading of 220 passengers located between the exits. The analysis reveals that there is a complex relationship between exit separation and evacuation efficiency. Indeed, other factors such as exit flow rate and exit availability are shown to exert a strong influence on critical exit separations. A main finding of this work is that for the cabin section examined under certification conditions, exit separations up to 170 feet will result in approximately constant total evacuation times and average personal evacuation times. This practical exit separation threshold is decreased to 114 feet if another combination of exits is selected. While other factors must also be considered when determining maximum allowable exit separations, these results suggest it is not possible to mandate a maximum exit separation without taking into consideration exit type, exit availability and aircraft configuration. This has implications when determining maximum allowable exit separations for wide and narrow body aircraft. It is also relevant when considering the maximum allowable separation between different exit types on a given aircraft configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report covers the testing and evaluation of the airEXODUS evacuation model. airEXODUS has been developed for evacuation certification testing, crew training and aircraft design. The report demonstrates the effectiveness of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a methodology for the application of computer simulation to the evacuation certification of aircraft is suggested. The methodology suggested here involves the use of computer simulation, historic certification data, component testing and full-scale certification trials. The proposed methodology sets out a protocol for how computer simulation should be undertaken in a certification environment and draws on experience from both the marine and building industries. Along with the suggested protocol, a phased introduction of computer models to certification is suggested. Given the sceptical nature of the aviation community regarding any certification methodology change in general, this would involve as a first step the use of computer simulation in conjunction with full-scale testing. The computer model would be used to reproduce a probability distribution of likely aircraft performance under current certification conditions and in addition, several other more challenging scenarios could be developed. The combination of full-scale trial, computer simulation (and if necessary component testing) would provide better insight into the actual performance capabilities of the aircraft by generating a performance probability distribution or performance envelope rather than a single datum. Once further confidence in the technique is established, the second step would only involve computer simulation and component testing. This would only be contemplated after sufficient experience and confidence in the use of computer models have been developed. The third step in the adoption of computer simulation for certification would involve the introduction of several scenarios based on for example exit availability instructed by accident analysis. The final step would be the introduction of more realistic accident scenarios into the certification process. This would require the continued development of aircraft evacuation modelling technology to include additional behavioural features common in real accident scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we briefly describe new modelling capabilities within the airEXODUS evacuation model. These new capabilities involve the explicit ability to simulate the interaction of crew with passengers in managing evacuation situations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the AASK database. The AASK database is unique as it is a record of human behaviour during survivable aviation accidents. The AASK database is compiled from interview data compiled by agencies such as the NTSB and the AAIB. The database can be found on the website http://fseg.gre.ac.uk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a methodology for the application of computer simulation to evacuation certification of aircraft is suggested. This involves the use of computer simulation, historic certification data, component testing, and full-scale certification trials. The methodology sets out a framework for how computer simulation should be undertaken in a certification environment and draws on experience from both the marine and building industries. In addition, a phased introduction of computer models to certification is suggested. This involves as a first step the use of computer simulation in conjunction with full-scale testing. The combination of full-scale trial, computer simulation (and if necessary component testing) provides better insight into aircraft evacuation performance capabilities by generating a performance probability distribution rather than a single datum. Once further confidence in the technique is established the requirement for the full-scale demonstration could be dropped. The second step in the adoption of computer simulation for certification involves the introduction of several scenarios based on, for example, exit availability, instructed by accident analysis. The final step would be the introduction of more realistic accident scenarios. This would require the continued development of aircraft evacuation modeling technology to include additional behavioral features common in real accident scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of passenger accounts from survivable aviation accidents/incidents compiled from interview data collected by agencies such as the US NTSB. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It also plays a significant role in the development of the airEXODUS aircraft evacuation model, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes the latest version of the database (Version 4.0) and includes some analysis of passenger behavior during actual accidents/incidents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Full-scale furnished cabin fires have been studied experimentally for the purpose of characterising the post-crash cabin fire environment by the US Federal Aviation Administration for many years. In this paper the Computational Fluid Dynamics fire field model SMARTFIRE is used to simulate one of these fires conducted in the C-133 test facility in order to provide further validation of the computational approach and the SMARTFIRE software. The experiment involves exposing the interior cabin materials to an external fuel fire, opening only one exit at the far end of the cabin (the same side as the rupture) for ventilation, and noting the subsequent spread of the external fire to the cabin interior and the onset of flashover at approximately 210 seconds. Through this analysis, the software is shown to be in good agreement with the experimental data, producing reasonable agreement with the fire dynamics prior to flashover and producing a reasonable prediction of the flashover time i.e. 225 seconds. The paper then proceeds to utilize the model to examine the impact on flashover time of the extent of cabin furnishings and cabin ventilation provided by available exits

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report concerns the development of the AASK V4.0 database (CAA Project 560/SRG/R+AD). AASK is the Aircraft Accident Statistics and Knowledge database, which is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from interviews of the occupants involved in aircraft accidents. The AASK database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. With support from the UK CAA (Project 277/SRG/R&AD), AASK V3.0 was developed. This was an on-line prototype system available over the internet to selected users and included a significantly increased number of passenger accounts compared with earlier versions, the introduction of cabin crew accounts, the introduction of fatality information and improved functionality through the seat plan viewer utility. The most recently completed AASK project (Project 560/SRG/R+AD) involved four main components: a) analysis of the data collected in V3.0; b) continued collection and entry of data into AASK; c) maintenance and functional development of the AASK database; and d) user feedback survey. All four components have been pursued and completed in this two-year project. The current version developed in the last year of the project is referred to as AASK V4.0. This report provides summaries of the work done and the results obtained in relation to the project deliverables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results from a questionnaire study of participant exit awareness and suggested exit selection in the event of emergency evacuations involving narrow body aircraft. The study involved 459 participants with varying flight experience. The results of this study supports the hypothesis that poor understanding by passengers of aircraft exit location and configuration may be a contributory factor in the resulting poor exit selection decisions made by passengers in emergency situations. These results have important safety implications for airlines and also provide important insight to evacuation model developers regarding the decision making process in agent exit selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the influence of exit availability on evacuation time for narrow body aircraft under certification trial conditions using computer simulation. A narrow body aircraft which has previously passed the certification trial is used as the test configuration. While maintaining the certification requirement of 50% of the available exits, six different configurations are examined. These include the standard certification and five other exit configurations based on commonly occurring exit combinations found in accidents. These configurations are based on data derived from the AASK database and the evacuation simulations are performed using the airEXODUS evacuation software. The results show that the certification practise of using half of the available exits predominately down one side of the aircraft is neither statistically relevant nor challenging. For the aircraft cabin layout examined, the exit configuration used in certification trial produces the shortest egress times. Furthermore, three of the six exit combinations investigated result in predicted egress times in excess of 90 seconds, suggesting that the aircraft would not satisfy the certification requirement under these conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a runback water and ice prediction model is extended to anti-icing and thermal de-icing situations. The resulting coupled equations that govern thin-film flow, ice accretion, and heat conduction in the multilayered system substrate-ice-water are solved using an explicit finite volume approach. The procedure is implemented in the three-dimensional icing code ICECREMO2, and both structured and unstructured grids can be considered. Numerical results are presented to compare the present code simulations to some data provided by other ice prediction codes and to show the capabilities of the present numerical tool.