919 resultados para Doped Carbon Nanotubes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermally induced demixing in an LCST mixture, polystyrene (PS)/polyvinyl methyl ether] (PVME), was used as a template to design materials with high electrical conductivity. This was facilitated by gelation of multiwall carbon nanotubes (MWNTs) in a given phase of the blends. The MWNTs were mixed in the miscible blends and the thermodynamic driven demixing further resulted in selective localization in the PVME phase of the blends. This was further confirmed by atomic force microscopy (AFM). The time dependent gelation of MWNTs at shallow quench depth, evaluated using isochronal temperature sweep by rheology, was studied by monitoring the melt electrical conductivity of the samples in situ by an LCR meter coupled to a rheometer. By varying the composition in the mixture, several intricate shapes like gaskets and also coatings capable of attenuating the EM radiation in the microwave frequency can be derived. For instance, the PVME rich mixtures can be molded in the form of a gasket, O-ring and other intricate shapes while the PS rich mixtures can be coated onto an insulating polymer to enhance the shielding effectiveness (SE) for EM radiation. The SE of the various materials was analyzed using a vector network analyzer in both the X-band (8.2 to 12 GHz) and the K-u-band (12 to 18 GHz) frequency. The improved SE upon gelation of MWNTs in the demixed blends is well evident by comparing the SE before and after demixing. A reflection loss of -35 dB was observed in the blends with 2 wt% MWNTs. Further, by coating a layer of ca. 0.15 mm of PS/PVME/MWNT, a SE of -15 dB at 18 GHz could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensing of relative humidity (RH) at room temperature has potential applications in several areas ranging from biomedical to horticulture, paper, and textile industries. In this paper, a highly sensitive humidity sensor based on carbon nanotubes (CNTs) coated on the surface of an etched fiber Bragg grating (EFBG) sensor has been demonstrated, for detecting RH over a wide range of 20%-90% at room temperature. When water molecules interact with the CNT coated EFBG, the effective refractive index of the fiber core changes, resulting in a shift in the Bragg wavelength. It has been possible to achieve a high sensitivity of similar to 31 pm/% RH, which is the highest compared with many of the existing FBG-based humidity sensors. The limit of detection in the CNT coated EFBG has been found to be similar to 0.03 RH. The experimental data shows a linear response of Bragg wavelength shift with increase in humidity. This novel method of incorporating CNTs on to the FBG sensor for humidity sensing has not been reported before.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 μm and inter-sheet separation of 380 μm. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (≈4 μm) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. © 2015 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonia plays an important role in our daily lives and hence its quantitative and qualitative sensing has become necessary. Bulk structure of carbon nanotubes (CNTs) has been employed to detect the gas concentration of 10 ppm. Hydrophobic CNTs were turned to hydrophilic via the application of a ramp electric field that allowed confinement of a controlled amount of water inside CNT microstructure. These samples were then also used to detect different gases. A comparative study has been performed for sensing three reducing gases, namely, ammonia, sulphur-di-oxide, and hydrogen sulphide to elaborate the selectivity of the sensor. A considerable structural bending in the bulk CNT was observed on evaporation of the confined water, which can be accounted to the zipping of individual nanotubes. However, the rate of the stress induced on these bulk microstructures increased on the exposure of ammonia due to the change in the surface tension of the confined solvent. A prototype of an alarm system has been developed to illustrate sensing concept, wherein the generated stress in the bulk CNT induces a reversible loss in electrical contact that changes the equivalent resistance of the electrical circuit upon exposure to the gas. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWNTs) were anchored onto graphene oxide sheets (GOs) via diazonium and C-C coupling reactions and characterized by spectroscopic and electron microscopic techniques. The thus synthesized MWNT-GO hybrid was then melt mixed with 50/50 polyamide6-maleic anhydride-modified acrylonitrile-butadiene-styrene (PA6-mABS) blend to design materials with high dielectric constant (30) and low dielectric loss. The phase morphology was studied by SEM and it was observed that the MWNT-GO hybrid was selectively localized in the PA6 phase of the blend. The 30 scales with the concentration of MWNT-GO in the blends, which interestingly showed a very low dielectric loss (< 0.2) making them potential candidate for capacitors. In addition, the dynamic storage modulus scales with the fraction of MWNT-GO in the blends, demonstrating their reinforcing capability as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an enhanced actuation in bulk carbon nanotubes (CNTs) under coupled electric and magnetic fields, which is much higher than that evaluated in the presence of individual fields. Coupled electric and magnetic fields induce a directional actuation demonstrating a transformation from polarity independent to dependent actuation behavior of CNTs. Both qualitative and quantitative analyses are performed to understand this transformation in the bulk CNTs. Moreover, actuations along radial and axial directions of CNTs have also demonstrated a similar directional behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly conducting composites were derived by selectively localizing multiwall carbon nanotubes (MWNTs) in co-continuous PVDF/ABS (50/50, wt/wt) blends. The electrical percolation threshold was obtained between 0.5 and 1 wt% MWNTs as manifested by a dramatic increase in the electrical conductivity by about six orders of magnitude with respect to the neat blends. In order to further enhance the electrical conductivity of the blends, the MWNTs were modified with amine terminated ionic liquid (IL), which, besides enhancing the interfacial interaction with PVDF, facilitated the formation of a network like structure of MWNTs. This high electrical conductivity of the blends, at a relatively low fraction (1 wt%), was further explored to design materials that can attenuate electromagnetic (EM) radiation. More specifically, to attenuate the EM radiation by absorption, a ferroelectric phase was introduced. To accomplish this, barium titanate (BT) nanoparticles chemically stitched onto graphene oxide (GO) sheets were synthesized and mixed along with MWNTs in the blends. Intriguingly, the total EM shielding effectiveness (SE) was enhanced by ca. 10 dB with respect to the blends with only MWNTs. In addition, the effect of introducing a ferromagnetic phase (Fe3O4) along with IL modified MWNTs was also investigated. This study opens new avenues in designing materials that can attenuate EM radiation by selecting either a ferroelectric (BT-GO) or a ferromagnetic phase (Fe3O4) along with intrinsically conducting nanoparticles (MWNTs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) are completely miscible below 50 wt % PVDF in the blends. In this work, an attempt was made to understand the fragility/cooperativity relation in glass-forming and crystalline blends of PVDF/PMMA and in the presence of a heteronucleating agent, multiwall carbon nanotubes (CNTs). Hence, three representative blends were chosen: a completely amorphous (10/90 by wt, PVDF/PMMA), on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA), and crystalline (60/40 by wt, PVDF/PMMA) blends. The intermolecular cooperativity/coupling, fragility, and configurational entropy near the glass transition temperature (T-g) were studied using differential scanning calorimetry (DSC) and broadband dielectric relaxation spectroscopy (DRS). It was observed that the blends with higher concentration of PMMA were more fragile (fragility index m = 141) and those with higher concentration of PVDF were more strong (m = 78). Interestingly, the coupling was less in the glass-forming blends (10/90 by wt, PVDF/PMMA) than the crystalline blends as manifested from DRS. This observation was also supported by DSC measurements which reflected that the cooperative rearranging region (CRR) existed over a smaller length scales in fragile blends as compared to strong blends, possibly due to restricted amorphous mobility. This effect was more prominent in the presence of CNTs, in particular for 50/50 (by wt) and 60/40 (by wt) PVDF/PMMA blends. Further, the configurational entropy, as manifested from DRS, decreased significantly in the strong blends in striking contrast to the fragile blends, supported by DSC, which manifested in an increase in the volume of cooperativity in the strong blends. The higher coupling in the crystalline blends can be attributed to good packing of the amorphous regions. While this is understood for crystalline blends (60/40 by wt, PVDF/PMMA), it is envisaged that enhanced dynamic heterogeneity is accountable for increased coupling in the case of blends which are on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA). The latter is also supported by broad relaxations near the T-g in DRS. Interestingly, the intermolecular coupling in the blends in the presence of CNTs has reduced, though the potential energy barrier hindering the rearrangement of CRR is lower than the blends without CNTs. In addition, the amorphous packing is not as effective as the blends without CNTs. This is manifested from reduced volume of cooperativity in particular, for 50/50 (by wt) and 60/40 (by wt) blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current paper reports synthesis of chemical free graphene by unzipping of the carbon nanotubes (CNTs) using high strain rate deformation at 150K. A specially designed cryomill operating at 150 K was used for the experiments. The mechanism of unzipping was further explored using molecular dynamics (MD) simulations. Both experimental and simulation results reveal two modes of unzipping through radial and shear loading. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lightweight and flexible electromagnetic shielding materials were designed by selectively localizing multiwall carbon nanotubes (MWNTs) anchored magnetic nanoparticles in melt mixed co-continuous blends of polyvinylidene fluoride (PVDF) and poly(styrene-co-acrylonitrile) (SAN). In order to facilitate better dispersion, the MWNTs were modified using pyrenebutyric acid (PBA) via pi-pi stacking. While one of the two-targeted properties, i.e., high electrical conductivity, was achieved by PBA modified MWNTs, high magnetic loss was accomplished by introducing nickel (NF) or cobalt ferrites (CF). Moreover, the attenuation by absorption can be tuned either by using NF (58% absorption) or CF (64% absorption) in combination with PBA-MWNTs. More interestingly, when CF was anchored on to MWNTs via the pyrene derivative, the minimum reflection loss attained was -55 dB in the Ku band (12-18 GHz) frequency and with a large bandwidth. In addition, the EM waves were blocked mostly by absorption (70%). This study opens new avenues in designing flexible and lightweight microwave absorbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ESD behavior of metallic carbon nanotubes (CNTs) is explored. Unique TLP I-V characteristics and failure mechanism of carbon shells are discussed. ESD failure in CNTs is attributed to shell burning. It was found that CNT interconnect changes resistance in steps of fundamental quantum resistance (h/2e(2)) after individual shell burning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.