890 resultados para Distributed artificial intelligence - multiagent systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV’s attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV’s motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite web services comprise several component web services. When a composite web service is executed centrally, a single web service engine is responsible for coordinating the execution of the components, which may create a bottleneck and degrade the overall throughput of the composite service when there are a large number of service requests. Potentially this problem can be handled by decentralizing execution of the composite web service, but this raises the issue of how to partition a composite service into groups of component services such that each group can be orchestrated by its own execution engine while ensuring acceptable overall throughput of the composite service. Here we present a novel penalty-based genetic algorithm to solve the composite web service partitioning problem. Empirical results show that our new algorithm outperforms existing heuristic-based solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unusual event detection in crowded scenes remains challenging because of the diversity of events and noise. In this paper, we present a novel approach for unusual event detection via sparse reconstruction of dynamic textures over an overcomplete basis set, with the dynamic texture described by local binary patterns from three orthogonal planes (LBPTOP). The overcomplete basis set is learnt from the training data where only the normal items observed. In the detection process, given a new observation, we compute the sparse coefficients using the Dantzig Selector algorithm which was proposed in the literature of compressed sensing. Then the reconstruction errors are computed, based on which we detect the abnormal items. Our application can be used to detect both local and global abnormal events. We evaluate our algorithm on UCSD Abnormality Datasets for local anomaly detection, which is shown to outperform current state-of-the-art approaches, and we also get promising results for rapid escape detection using the PETS2009 dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital Human Models (DHM) have been used for over 25 years. They have evolved from simple drawing templates, which are nowadays still used in architecture, to complex and Computer Aided Engineering (CAE) integrated design and analysis tools for various ergonomic tasks. DHM are most frequently used for applications in product design and production planning, with many successful implementations documented. DHM from other domains, as for example computer user interfaces, artificial intelligence, training and education, or the entertainment industry show that there is also an ongoing development towards a comprehensive understanding and holistic modeling of human behavior. While the development of DHM for the game sector has seen significant progress in recent years, advances of DHM in the area of ergonomics have been comparatively modest. As a consequence, we need to question if current DHM systems are fit for the design of future mobile work systems. So far it appears that DHM in Ergonomics are rather limited to some traditional applications. According to Dul et al. (2012), future characteristics of Human Factors and Ergonomics (HFE) can be assigned to six main trends: (1) global change of work systems, (2) cultural diversity, (3) ageing, (4) information and communication technology (ICT), (5) enhanced competiveness and the need for innovation, and; (6) sustainability and corporate social responsibility. Based on a literature review, we systematically investigate the capabilities of current ergonomic DHM systems versus the ‘Future of Ergonomics’ requirements. It is found that DHMs already provide broad functionality in support of trends (1) and (2), and more limited options in regards to trend (3). Today’s DHM provide access to a broad range of national and international databases for correct differentiation and characterization of anthropometry for global populations. Some DHM explicitly address social and cultural modeling of groups of people. In comparison, the trends of growing importance of ICT (4), the need for innovation (5) and sustainability (6) are addressed primarily from a hardware-oriented and engineering perspective and not reflected in DHM. This reflects a persistent separation between hardware design (engineering) and software design (information technology) in the view of DHM – a disconnection which needs to be urgently overcome in the era of software defined user interfaces and mobile devices. The design of a mobile ICT-device is discussed to exemplify the need for a comprehensive future DHM solution. Designing such mobile devices requires an approach that includes organizational aspects as well as technical and cognitive ergonomics. Multiple interrelationships between the different aspects result in a challenging setting for future DHM. In conclusion, the ‘Future of Ergonomics’ pose particular challenges for DHM in regards to the design of mobile work systems, and moreover mobile information access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although recommender systems and reputation systems have quite different theoretical and technical bases, both types of systems have the purpose of providing advice for decision making in e-commerce and online service environments. The similarity in purpose makes it natural to integrate both types of systems in order to produce better online advice, but their difference in theory and implementation makes the integration challenging. In this paper, we propose to use mappings to subjective opinions from values produced by recommender systems as well as from scores produced by reputation systems, and to combine the resulting opinions within the framework of subjective logic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the strengths and weaknesses of a range of artificial intelligence approaches used in legal domains. Symbolic reasoning systems which rely on deductive, inductive and analogical reasoning are described and reviewed. The role of statistical reasoning in law is examined, and the use of neural networks analysed. There is discussion of architectures for, and examples of, systems which combine a number of these reasoning strategies. We conclude that to build intelligent legal decision support systems requires a range of reasoning strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction is an interesting model of legal reasoning, since it provides a method of capturing initial states of legal principles and rules, and adjusting these principles and rules over time as the law changes. In this article I explain how Artificial Intelligence-based inductive learning algorithms work, and show how they have been used in law to model legal domains. I identify some problems with implementations undertaken in law to date, and create a taxonomy of appropriate cases to use in legal inductive inferencing systems. I suggest that inductive learning algorithms have potential in modeling law, but that the artificial intelligence implementations to date are problematic. I argue that induction should be further investigated, since it has the potential to be an extremely useful mechanism for understanding legal domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we provide an overview of a number of fundamental reasoning formalisms in artificial intelligence which can and have been used in modelling legal reasoning. We describe deduction, induction and analogical reasoning formalisms, and show how they can be used separately to model legal reasoning. We argue that these formalisms can be used together to model legal reasoning more accurately, and describe a number of attempts to integrate the approaches.