835 resultados para Distributed Databases
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Thesis submitted in fulfilment of the requirements for the Degree of Master of Science in Computer Science
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
The “CMS Safety Closing Sensors System” (SCSS, or CSS for brevity) is a remote monitoring system design to control safety clearance and tight mechanical movements of parts of the CMS detector, especially during CMS assembly phases. We present the different systems that makes SCSS: its sensor technologies, the readout system, the data acquisition and control software. We also report on calibration and installation details, which determine the resolution and limits of the system. We present as well our experience from the operation of the system and the analysis of the data collected since 2008. Special emphasis is given to study positioning reproducibility during detector assembly and understanding how the magnetic fields influence the detector structure.
Resumo:
Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes.
Resumo:
Current computer systems have evolved from featuring only a single processing unit and limited RAM, in the order of kilobytes or few megabytes, to include several multicore processors, o↵ering in the order of several tens of concurrent execution contexts, and have main memory in the order of several tens to hundreds of gigabytes. This allows to keep all data of many applications in the main memory, leading to the development of inmemory databases. Compared to disk-backed databases, in-memory databases (IMDBs) are expected to provide better performance by incurring in less I/O overhead. In this dissertation, we present a scalability study of two general purpose IMDBs on multicore systems. The results show that current general purpose IMDBs do not scale on multicores, due to contention among threads running concurrent transactions. In this work, we explore di↵erent direction to overcome the scalability issues of IMDBs in multicores, while enforcing strong isolation semantics. First, we present a solution that requires no modification to either database systems or to the applications, called MacroDB. MacroDB replicates the database among several engines, using a master-slave replication scheme, where update transactions execute on the master, while read-only transactions execute on slaves. This reduces contention, allowing MacroDB to o↵er scalable performance under read-only workloads, while updateintensive workloads su↵er from performance loss, when compared to the standalone engine. Second, we delve into the database engine and identify the concurrency control mechanism used by the storage sub-component as a scalability bottleneck. We then propose a new locking scheme that allows the removal of such mechanisms from the storage sub-component. This modification o↵ers performance improvement under all workloads, when compared to the standalone engine, while scalability is limited to read-only workloads. Next we addressed the scalability limitations for update-intensive workloads, and propose the reduction of locking granularity from the table level to the attribute level. This further improved performance for intensive and moderate update workloads, at a slight cost for read-only workloads. Scalability is limited to intensive-read and read-only workloads. Finally, we investigate the impact applications have on the performance of database systems, by studying how operation order inside transactions influences the database performance. We then propose a Read before Write (RbW) interaction pattern, under which transaction perform all read operations before executing write operations. The RbW pattern allowed TPC-C to achieve scalable performance on our modified engine for all workloads. Additionally, the RbW pattern allowed our modified engine to achieve scalable performance on multicores, almost up to the total number of cores, while enforcing strong isolation.
Resumo:
Taking into account the fact that the sun’s radiation is estimated to be enough to cover 10.000 times the world’s total energy needs (BRAKMANN & ARINGHOFF, 2003), it is difficult to understand how solar photovoltaic systems (PV) are still such a small part of the energy source matrix across the globe. Though there is an ongoing debate as to whether energy consumption leads to economic growth or whether it is the other way around, the two variables appear correlated and it is clear that ensuring the availability of energy to match a country’s growth targets is one of the prime concerns for any government. The topic of centralized vs distributed electricity generation is also approached, especially in what regards the latter fit to developing countries needs, namely the lack of investment capabilities and infrastructure, scattered population, and other factors. Finally, Brazil’s case is reviewed, showing that the current cost of electricity from the grid versus the cost from PV solutions still places an investment of this nature with 9 to 16 years to reach breakeven (from a 25 year panel lifespan), which is too high compared to the required 4 years for most Brazilians. Still, recently passed legislation opened the door, even if unknowingly, to the development of co-owned solar farms, which could reduce the implementation costs by as much as 20% and hence reduce the number of years to breakeven by 3 years.
Resumo:
O aumento da quantidade de dados gerados que se tem verificado nos últimos anos e a que se tem vindo a dar o nome de Big Data levou a que a tecnologia relacional começasse a demonstrar algumas fragilidades no seu armazenamento e manuseamento o que levou ao aparecimento das bases de dados NoSQL. Estas estão divididas por quatro tipos distintos nomeadamente chave/valor, documentos, grafos e famílias de colunas. Este artigo é focado nas bases de dados do tipo column-based e nele serão analisados os dois sistemas deste tipo considerados mais relevantes: Cassandra e HBase.
Resumo:
Tese de Doutoramento Ramo Engenharia Industrial e de Sistemas
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Distributed data aggregation is an important task, allowing the de- centralized determination of meaningful global properties, that can then be used to direct the execution of other applications. The resulting val- ues result from the distributed computation of functions like count, sum and average. Some application examples can found to determine the network size, total storage capacity, average load, majorities and many others. In the last decade, many di erent approaches have been pro- posed, with di erent trade-o s in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of ag- gregation algorithms, it can be di cult and time consuming to determine which techniques will be more appropriate to use in speci c settings, jus- tifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally de nes the concept of aggrega- tion, characterizing the di erent types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.
Resumo:
Propositionalization, Inductive Logic Programming, Multi-Relational Data Mining
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2010