959 resultados para Distal Limb


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of vision on the excitability of corticospinal projections to the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles of right human forearm was investigated before and during discrete movement of the opposite limb. An external force opposed the initial phase of the movement (wrist flexion) and assisted the reverse phase, so that recruitment of the wrist extensors was minimized. Three conditions were used as follows: viewing the inactive right limb (Vision), viewing the mirror image of the moving left limb (Mirror), and with vision of the right limb occluded (No Vision). Transcranial magnetic stimulation was delivered to the left motor cortex: before, at the onset of, or during the left limb movement to obtain motor evoked potentials (MEPs) in the muscles of the right forearm. At and following movement onset, MEPs obtained in the right FCR were smaller in the Vision condition than in the Mirror and No Vision conditions. A distinct pattern of variation was obtained for the ECR. In all conditions, MEPs in this muscle were elevated upon or following movement of the opposite limb. An additional analysis of ipsilateral silent periods indicated that interhemispheric inhibition plays a role in mediating these effects. Activity-dependent changes in corticospinal output to a resting limb during discrete actions of the opposite limb are thus directly contingent upon where one looks. Furthermore, the extent to which vision exerts an influence upon projections to specific muscles varies in accordance with the functional contribution of their homologs to the intended action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a two-level 3D human pose tracking method for a specific action captured by several cameras. The generation of pose estimates relies on fitting a 3D articulated model on a Visual Hull generated from the input images. First, an initial pose estimate is constrained by a low dimensional manifold learnt by Temporal Laplacian Eigenmaps. Then, an improved global pose is calculated by refining individual limb poses. The validation of our method uses a public standard dataset and demonstrates its accurate and computational efficiency. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.

Results: Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.

Conclusions: Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tendon of flexor pollicis longus angulates at the trapezio-metacarpal joint level. The degree of angulation varies with extent of radial/ulnar deviation (Rack and Ross [1984] J. Physiol. 351:99–110). We report a fibrous pulley at this level that helps stabilize the tendon and facilitates its action. The morphology of the pulley is described. We believe that it has an important role to play in the unique function of the tendon facilitating the movement of the thumb perpendicular to the plane of the thumbnail. Clin. Anat. 21:427–432, 2008. © 2008 Wiley-Liss, Inc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION:

Dorsally displaced fractures of the distal radius fractures are one of the commonest in day-to-day practice. There is still no consensus among surgeons regarding the suitability of using volar or the dorsal cortex as basis for internal fixation for dorsally displaced fractures.

BACKGROUND:

We report an anatomical study, which compares the thickness of the volar and dorsal cortices of cadaveric adult radii using digital photography.

RESULTS:

Results of this study show that the volar cortex was statistically, significantly thicker than the dorsal cortex. We believe that the volar cortex may behave as the calcar of the distal radius and hence internal fixation devices applied to the volar cortex may provide a more stable internal fixation compared to those based on the dorsal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function.

Objective/hypothesis: To establish whether sigmoid fits provide a reliable basis upon which to characterize the input–output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC).

Methods: A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation.

Results: The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS).

Conclusion(s): The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation.