977 resultados para Disease mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aims to increase understanding of and delivery to qualitative (or intangible) outcomes and impacts of major economic infrastructure projects (i.e. bridges, roads, water infrastructure and the like), and the role of stakeholder engagement in this process.-------- Recent doctoral research completed at the Queensland University of Technology by the author investigated how the principles of corporate responsibility are applied in the construction sector. This related specifically to major economic infrastructure projects (hereafter referred to as major projects), with particular regard to urban transportation projects. One outcome of this past research was a value-mapping framework which enables organisations to track project outcomes to pre-existing corporate objectives, and report on these throughout the project life-cycle. Two recommendations for future research from that work formed the basis for this current research: • How can qualitative measurables be better integrated into decision-making on major economic infrastructure projects? • How can non-contractual stakeholders be more effectively engaged with on these projects? The link between these two areas may relate to the stakeholders’ role in qualitative indicator identification and measurement. This is a key point for future investigation.---------- The aim of this research is thus to further investigate these two areas, with the intent of (i) better defining the research direction; (ii) identifying potential research partners; and (iii) identify possible sources of future funding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To navigate successfully in a novel environment a robot needs to be able to Simultaneously Localize And Map (SLAM) its surroundings. The most successful solutions to this problem so far have involved probabilistic algorithms, but there has been much promising work involving systems based on the workings of part of the rodent brain known as the hippocampus. In this paper we present a biologically plausible system called RatSLAM that uses competitive attractor networks to carry out SLAM in a probabilistic manner. The system can effectively perform parameter self-calibration and SLAM in one dimension. Tests in two dimensional environments revealed the inability of the RatSLAM system to maintain multiple pose hypotheses in the face of ambiguous visual input. These results support recent rat experimentation that suggest current competitive attractor models are not a complete solution to the hippocampal modelling problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the current state of RatSLAM, a Simultaneous Localisation and Mapping (SLAM) system based on models of the rodent hippocampus. RatSLAM uses a competitive attractor network to fuse visual and odometry information. Energy packets in the network represent pose hypotheses, which are updated by odometry and can be enhanced or inhibited by visual input. This paper shows the effectiveness of the system in real robot tests in unmodified indoor environments using a learning vision system. Results are shown for two test environments; a large corridor loop and the complete floor of an office building.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RatSLAM is a system for vision-based Simultaneous Localisation and Mapping (SLAM) inspired by models of the rodent hippocampus. The system can produce stable representations of large complex environments during robot experiments in both indoor and outdoor environments. These representations are both topological and metric in nature, and can involve multiple representations of the same place as well as discontinuities. In this paper we describe a new technique known as experience mapping that can be used online with the RatSLAM system to produce world representations known as experience maps. These maps group together multiple place representations and are spatially continuous. A number of experiments have been conducted in simulation and a real world office environment. These experiments demonstrate the high degree to which experience maps are representative of the spatial arrangement of the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disability following a stroke can impose various restrictions on patients’ attempts at participating in life roles. The measurement of social participation, for instance, is important in estimating recovery and assessing quality of care at the community level. Thus, the identification of factors influencing social participation is essential in developing effective measures for promoting the reintegration of stroke survivors into the community. Data were collected from 188 stroke survivors (mean age 71.7 years) 12 months after discharge from a stroke rehabilitation hospital. Of these survivors, 128 (61 %) had suffered a first ever stroke, and 81 (43 %) had a right hemisphere lesion. Most (n = 156, 83 %) were living in their own home, though 32 (17 %) were living in residential care facilities. Path analysis was used to test a hypothesized model of participation restriction which included the direct and indirect effects between social, psychological and physical outcomes and demographic variables. Participation restriction was the dependent variable. Exogenous independent variables were age, functional ability, living arrangement and gender. Endogenous independent variables were depressive symptoms, state self-esteem and social support satisfaction. The path coefficients showed functional ability having the largest direct effect on participation restriction. The results also showed that more depressive symptoms, low state self-esteem, female gender, older age and living in a residential care facility had a direct effect on participation restriction. The explanatory variables accounted for 71% of the variance in explaining participation restriction. Prediction models have empirical and practical applications such as suggesting important factors to be considered in promoting stroke recovery. The findings suggest that interventions offered over the course of rehabilitation should be aimed at improving functional ability and promoting psychological aspects of recovery. These are likely to enhance stroke survivors resume or maximize their social participation so that they may fulfill productive and positive life roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, the main contributors to morbidity and mortality are chronic diseases, including cardiovascular disease and diabetes. Chronic diseases are costly and partially avoidable, with around sixty percent of deaths and nearly fifty percent of the global disease burden attributable to these conditions. By 2020, chronic illnesses will likely be the leading cause of disability worldwide. Existing health care systems, both national and international, that focus on acute episodic health conditions, cannot address the worldwide transition to chronic illness; nor are they appropriate for the ongoing care and management of those already afflicted with chronic diseases. International and Australian strategic planning documents articulate similar elements to manage chronic disease; including the need for aligning sectoral policies for health, forming partnerships and engaging communities in decision-making. The Australian National Chronic Disease Strategy focuses on four core areas for managing chronic disease; prevention across the continuum, early detection and treatment, integrated and coordinated care, and self-management. Such a comprehensive approach incorporates the entire population continuum, from the ‘healthy’, to those with risk factors, through to people suffering from chronic conditions and their sequelae. This chapter examines comprehensive approach to the prevention, management and care of the population with non-communicable, chronic diseases and communicable diseases. It analyses models of care in the context of need, service delivery options and the potential to prevent or manage early intervention for chronic and communicable diseases. Approaches to chronic diseases require integrated approaches that incorporate interventions targeted at both individuals and populations, and emphasise the shared risk factors of different conditions. Communicable diseases are a common and significant contributor to ill health throughout the world. In many countries, this impact has been minimised by the combined efforts of preventative health measures and improved treatment of infectious diseases. However in underdeveloped nations, communicable diseases continue to contribute significantly to the burden of disease. The aim of this chapter is to outline the impact that chronic and communicable diseases have on the health of the community, the public health strategies that are used to reduce the burden of those diseases and the old and emerging risks to public health from infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present recent results with using range from radio for mobile robot localization. In previous work we have shown how range readings from radio tags placed in the environment can be used to localize a robot. We have extended previous work to consider robustness. Specifically, we are interested in the case where range readings are very noisy and available intermittently. Also, we consider the case where the location of the radio tags is not known at all ahead of time and must be solved for simultaneously along with the position of the moving robot. We present results from a mobile robot that is equipped with GPS for ground truth, operating over several km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation describling a project in data intensive research in the humanities. Measuring activity of publically available data in social networks such as Blogosphere, Twitter, Flickr, YouTube