953 resultados para Discrete-continuous optimal control problems
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
This paper, a micro-electro-mechanical systems (MEMS) with parametric uncertainties is considered. The non-linear dynamics in MEMS system is demonstrated with a chaotic behavior. We present the linear optimal control technique for reducing the chaotic movement of the micro-electromechanical system with parametric uncertainties to a small periodic orbit. The simulation results show the identification by linear optimal control is very effective. © 2013 Academic Publications, Ltd.
Resumo:
In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.
Resumo:
In this work a Nonzero-Sum NASH game related to the H2 and H∞ control problems is formulated in the context of convex optimization theory. The variables of the game are limiting bounds for the H2 and H∞ norms, and the final controller is obtained as an equilibrium solution, which minimizes the `sensitivity of each norm' with respect to the other. The state feedback problem is considered and illustrated by numerical examples.
Resumo:
The timed-initiation paradigm developed by Ghez and colleagues (1997) has revealed two modes of motor planning: continuous and discrete. Continuous responding occurs when targets are separated by less than 60° of spatial angle, and discrete responding occurs when targets are separated by greater than 60°. Although these two modes are thought to reflect the operation of separable strategic planning systems, a new theory of movement preparation, the Dynamic Field Theory, suggests that two modes emerge flexibly from the same system. Experiment 1 replicated continuous and discrete performance using a task modified to allow for a critical test of the single system view. In Experiment 2, participants were allowed to correct their movements following movement initiation (the standard task does not allow corrections). Results showed continuous planning performance at large and small target separations. These results are consistent with the proposal that the two modes reflect the time-dependent “preshaping” of a single planning system.
Resumo:
This paper studies the asymptotic optimality of discrete-time Markov decision processes (MDPs) with general state space and action space and having weak and strong interactions. By using a similar approach as developed by Liu, Zhang, and Yin [Appl. Math. Optim., 44 (2001), pp. 105-129], the idea in this paper is to consider an MDP with general state and action spaces and to reduce the dimension of the state space by considering an averaged model. This formulation is often described by introducing a small parameter epsilon > 0 in the definition of the transition kernel, leading to a singularly perturbed Markov model with two time scales. Our objective is twofold. First it is shown that the value function of the control problem for the perturbed system converges to the value function of a limit averaged control problem as epsilon goes to zero. In the second part of the paper, it is proved that a feedback control policy for the original control problem defined by using an optimal feedback policy for the limit problem is asymptotically optimal. Our work extends existing results of the literature in the following two directions: the underlying MDP is defined on general state and action spaces and we do not impose strong conditions on the recurrence structure of the MDP such as Doeblin's condition.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Switching mode power supplies (SMPS) are subject to low power factor and high harmonic distortions. Active power-factor correction (APFC) is a technique to improve the power factor and to reduce the harmonic distortion of SMPSs. However, this technique results in double frequency output voltage variation which can be reduced by using a large output capacitance. Using large capacitors increases the cost and size of the converter. Furthermore, the capacitors are subject to frequent failures mainly caused by evaporation of the electrolytic solution which reduce the converter reliability. This thesis presents an optimal control method for the input current of a boost converter to reduce the size of the output capacitor. The optimum current waveform as a function of weighing factor is found by using the Euler Lagrange equation. A set of simulations are performed to determine the ideal weighing which gives the lowest possible output voltage variation as the converter still meets the IEC-61000-3-2 class-A harmonics requirements with a power factor of 0.8 or higher. The proposed method is verified by the experimental work. A boost converter is designed and it is run for different power levels, 100 W, 200 W and 400 W. The desired output voltage ripple is 10 V peak to peak for the output voltage of 200 Vdc. This ripple value corresponds to a ± 2.5% output voltage ripple. The experimental and the simulation results are found to be quite matching. A significant reduction in capacitor size, as high as 50%, is accomplished by using the proposed method.
Resumo:
Because of increasing bulk milk somatic cell counts and continuous clinical mastitis problems in a substantial number of herds, a national mastitis control program was started in 2005 to improve udder health in the Netherlands. The program started with founding the Dutch Udder Health Centre (UGCN), which had the task to coordinate the program. The program consisted of 2 parts: a research part and a knowledge-transfer part, which were integrated as much as possible. The knowledge-transfer part comprised 2 communication strategies: a central and a peripheral approach. The central approach was based on educating farmers using comprehensive science-based and rational argumentation about mastitis prevention and included on-farm study group meetings. Comprehensive education materials were developed for farmers that were internally motivated to improve udder health. In the peripheral approach it was tried to motivate farmers to implement certain management measures using nontechnical arguments. Mass media campaigns were used that focused on one single aspect of mastitis prevention. These communication strategies, as well as an integrated approach between various stakeholders and different scientific disciplines were used to reach as many farmers as possible. It should be noted that, because this intervention took place at a national level, no control group was available, as it would be impossible to isolate farmers from all forms of communication for 5 years. Based on several studies executed during and after the program, however, the results suggest that udder health seemed to have improved on a national level during the course of the program from 2005 to 2010. Within a cohort of dairy herds monitored during the program, the prevalence of subclinical mastitis did not change significantly (23.0 in 2004 vs. 22.2 in 2009). The incidence rate of clinical mastitis, however, decreased significantly, from 33.5 to 28.1 quarter cases per 100 cow years at risk. The most important elements of the farmers' mindset toward mastitis control also changed favorably. The simulated costs of mastitis per farm were reduced compared with a situation in which the mastitis would not have changed, with € 400 per year. When this amount is extrapolated to all Dutch farms, the sector as a whole reduced the total costs of mastitis by € 8 million per year. It is difficult to assign the improved udder health completely to the efforts of the program due to the lack of a control group. Nevertheless, investing € 8 million by the Dutch dairy industry in a 5-yr national mastitis control program likely improved udder health and seemed to pay for itself financially.
Resumo:
In this paper, we extend the state-contingent production approach to principal–agent problems to the case where the state space is an atomless continuum. The approach is modelled on the treatment of optimal tax problems. The central observation is that, under reasonable conditions, the optimal contract may involve a fixed wage with a bonus for above-normal performance. This is analogous to the phenomenon of "bunching" at the bottom in the optimal tax literature.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.
Resumo:
We consider a mechanical problem concerning a 2D axisymmetric body moving forward on the plane and making slow turns of fixed magnitude about its axis of symmetry. The body moves through a medium of non-interacting particles at rest, and collisions of particles with the body's boundary are perfectly elastic (billiard-like). The body has a blunt nose: a line segment orthogonal to the symmetry axis. It is required to make small cavities with special shape on the nose so as to minimize its aerodynamic resistance. This problem of optimizing the shape of the cavities amounts to a special case of the optimal mass transfer problem on the circle with the transportation cost being the squared Euclidean distance. We find the exact solution for this problem when the amplitude of rotation is smaller than a fixed critical value, and give a numerical solution otherwise. As a by-product, we get explicit description of the solution for a class of optimal transfer problems on the circle.
Resumo:
In the context of active control of rotating machines, standard optimal controller methods enable a trade-off to be made between (weighted) mean-square vibrations and (weighted) mean-square currents injected into magnetic bearings. One shortcoming of such controllers is that no concern is devoted to the voltages required. In practice, the voltage available imposes a strict limitation on the maximum possible rate of change of control force (force slew rate). This paper removes the aforementioned existing shortcomings of traditional optimal control.
Resumo:
The aim of this thesis is to review and augment the theory and methods of optimal experimental design. In Chapter I the scene is set by considering the possible aims of an experimenter prior to an experiment, the statistical methods one might use to achieve those aims and how experimental design might aid this procedure. It is indicated that, given a criterion for design, a priori optimal design will only be possible in certain instances and, otherwise, some form of sequential procedure would seem to be indicated. In Chapter 2 an exact experimental design problem is formulated mathematically and is compared with its continuous analogue. Motivation is provided for the solution of this continuous problem, and the remainder of the chapter concerns this problem. A necessary and sufficient condition for optimality of a design measure is given. Problems which might arise in testing this condition are discussed, in particular with respect to possible non-differentiability of the criterion function at the design being tested. Several examples are given of optimal designs which may be found analytically and which illustrate the points discussed earlier in the chapter. In Chapter 3 numerical methods of solution of the continuous optimal design problem are reviewed. A new algorithm is presented with illustrations of how it should be used in practice. It is shown that, for reasonably large sample size, continuously optimal designs may be approximated to well by an exact design. In situations where this is not satisfactory algorithms for improvement of this design are reviewed. Chapter 4 consists of a discussion of sequentially designed experiments, with regard to both the philosophies underlying, and the application of the methods of, statistical inference. In Chapter 5 we criticise constructively previous suggestions for fully sequential design procedures. Alternative suggestions are made along with conjectures as to how these might improve performance. Chapter 6 presents a simulation study, the aim of which is to investigate the conjectures of Chapter 5. The results of this study provide empirical support for these conjectures. In Chapter 7 examples are analysed. These suggest aids to sequential experimentation by means of reduction of the dimension of the design space and the possibility of experimenting semi-sequentially. Further examples are considered which stress the importance of the use of prior information in situations of this type. Finally we consider the design of experiments when semi-sequential experimentation is mandatory because of the necessity of taking batches of observations at the same time. In Chapter 8 we look at some of the assumptions which have been made and indicate what may go wrong where these assumptions no longer hold.
Resumo:
We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).