890 resultados para Direct energy conversion.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This investigation is motivated by the need for new visible frequency direct bandgap semiconductor materials that are abundant and low-cost to meet the increasing demand for optoelectronic devices in applications such as solid state lighting and solar energy conversion. Proposed here is the utilization of zinc-IV-nitride materials, where group IV elements include silicon, germanium, and tin, as earth-abundant alternatives to the more common III-nitrides in optoelectronic devices. These compound semiconductors were synthesized under optimized conditions using reactive radio frequency magnetron sputter deposition. Single phase ZnSnN2, having limited experimental accounts in literature, is validated by identification of the wurtzite-derived crystalline structure predicted by theory through X-ray and electron diffraction studies. With the addition of germanium, bandgap tunability of ZnSnxGe1-xN2 alloys is demonstrated without observation of phase separation, giving these materials a distinct advantage over InxGa1-xN alloys. The accessible bandgaps range from 1.8 to 3.1 eV, which spans the majority of the visible spectrum. Electron densities, measured using the Hall effect, were found to be as high as 1022 cm−3 and indicate that the compounds are unintentionally degenerately doped. Given these high carrier concentrations, a Burstein-Moss shift is likely affecting the optical bandgap measurements. The discoveries made in this thesis suggest that with some improvements in material quality, zinc-IV-nitrides have the potential to enable cost-effective and scalable optoelectronic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hysteresis and multistability are fundamental phenomena of driven nonlinear oscillators, which, however, restrict many applications such as mechanical energy harvesting. We introduce an electrical control mechanism to switch from the low to the high energy output branch of a nonlinear energy harvester by exploiting the strong interplay between its electrical and mechanical degrees of freedom. This method improves the energy conversion efficiency over a wide bandwidth in a frequency-amplitude-varying environment using only a small energy budget. The underlying effect is independent of the device scale and the transduction method and is explained using a modified Duffing oscillator model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In farbstoffsensibilisierten Solarzellen (DSSC) spielen Chromophore, die als Lichtsammel- und Energie-/Elektronentransfersysteme fungieren, eine zentrale Rolle. Phthalocyanine mit ihren intensiven Absorptionsbanden um 400 nm und 700 nm besitzen großes Potential für die effektive Sensibilisierung von Solarzellen. Trotz ihrer vielversprechenden physikochemischen Eigenschaften und intensiver Bemühungen erreichen Phthalocyanin-sensibilisierte Solarzellen nicht die Effizienzen, die bisher mit anderen Chromophorklassen erzielt werden konnten. In der vorliegenden Dissertation wurde die Entwicklung effizienter Lichtsammelsysteme für DSSC auf der Basis von Aza-substituierten Phthalocyaninen, sogenannten Pyrazinoporphyrazinen, verfolgt. Ein besonderer Fokus lag dabei auf einer Verbesserung der Absorptionseigenschaften der Chromophore im Bereich ihrer intrinsischen Absorptionslücke zwischen den Maxima um 400 nm und 700 nm. Um diese optische Lücke zu schließen wurden komplementär absorbierende BODIPY-Farbstoffe kovalent an synthetisch maßgeschneiderte Porphyrazine gebunden. Insgesamt wurden sechs neue Porphyrazin-Sensibilisatoren synthetisiert und photophysikalisch sowie elektrochemisch charakterisiert. Alle in dieser Arbeit untersuchten Porphyrazine tragen sterisch anspruchsvolle Tri(p-tolyl)propinyl-Gruppen um Agglomerationen zu vermeiden. Darüber hinaus wurden die Porphyrazine peripher entweder mit Hydroxy- oder Carboxygruppen als Bindungsstellen für oxidische Materialien ausgestattet sowie mit sechs BODIPY-Auxiliarfarbstoffen funktionalisiert, deren Substitutionsmuster variiert wurden. Zur Darstellung der komplexen Porphyrazine wurde eine Syntheseroute erarbeitet, die statistische Cyclisierungen unterschiedlicher Dinitril-Vorstufen beinhaltete und es ermöglichte, funktionelle Gruppen erst am vorgeformten Makrocyclus einzuführen. Die photophysikalische Untersuchung der hochfunktionalisierten Farbstoffe erfolgte über UV/Vis- und Fluoreszenzspektroskopie. Im Fall der BODIPY-Porphyrazin-Hybride schließt die zusätzliche Absorptionsbande der peripheren BODIPY-Einheiten die intrinsische Absorptionslücke der Porphyrazine. Die Hybride zeigen somit eine breite Absorption über den gesamten sichtbaren Spektralbereich mit hohen Extinktionskoeffizienten von ca. 4·10^5 M^−1cm^−1. Mittels Fluoreszenz- und Anregungsspektren wurde ein photoinduzierter Energie-transfer von den BODIPY-Einheiten auf den Porphyrazinkern nachgewiesen. Das elektrochemische Verhalten der BODIPY- und Porphyrazin-Verbindungen wurde mittels Cyclo- und Square-Wave-Voltammetrie untersucht. Die Effizienzen der Lichtenergieumwandlung wurden mit Hilfe von selbst-hergestellten und standardisierten farbstoffsensibilisierten Solarzellen bewertet. Alle Solarzellen zeigten eine messbare Photoaktivität unter Bestrahlung. Die Wirkungsgrade der Zellen lagen jedoch alle unter 1 %. Generell führten die Carboxyl-funktionalisierten Porphyrazine zu besseren Wirkungsgraden als die analogen, mit der tripodalen Ankergruppe ausgestatteten Derivate. Die mit Hilfe von Adsorptionsisothermen ermittelten Bindungskonstanten der Adsorption der Farbstoffe auf der TiO2-Oberfläche zeigten, dass beide Hafteinheiten eine feste Verankerung der Chromophore auf den TiO2-Elektroden ermöglichten. Insgesamt wirkte sich die Präsenz der peripheren BODIPY-Farbstoffe positiv auf die Wirkungsgrade der Solarzellen aus, jedoch nur in geringem Maß. Dieses Ergebnis wurde hauptsächlich auf die geringe Energiedifferenz zwischen der Leitungsbandkante des TiO2 und den LUMO-Energieniveaus der Chromophore zurückgeführt. Zusätzlich scheinen konkurrierende Prozesse wie die direkte Photoelektroneninjektion von den BODIPY-Einheiten in das TiO2 eine wichtige Rolle zu spielen. Neben der Anwendung in DSSC wurde die Wechselwirkung der Porphyrazine mit Graphen untersucht. Hierzu wurden A3B-Porphyrazine mit Pyrenyl-Seitenketten ausgestattet, die eine nicht-kovalente Verankerung des Chromophors auf Graphen ermöglichen. UV/Vis- und Fluoreszenzmessungen gaben u.a. erste Hinweise auf eine elektronische Kommunikation zwischen den beiden Hybridpartnern.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Greenhouse production is a very important activity in the West region of Portugal, with an area of approximately 800 ha where the regular production consists in two crops per year, one in winter-spring and the other in summer-autumn. Many growers are now prepared to better exploit market opportunities, since they know that the big export window opportunity is from June to September, when the production is difficult in other regions of south due to high temperatures. Grower’s use new and more productive varieties, either in soil or hydroponic systems, mostly in unheated greenhouses, naturally ventilated, and equipped with modern fertigation systems. Greenhouse production causes some environmental impacts due to the high use of inputs. Several improvements in technologies and crop practices may contribute to increase the use efficiency of resources, decreasing the negative environmental impacts. Greenhouse vegetable production in Northern EU countries is based on the supply of heating and differs significantly from the production system in the Southern EU countries. In the Northern countries, direct energy inputs, mostly for heating, are predominant while in the South the indirect energy input is also important, mainly associated with fertilizers, plastic cover materials and other auxiliary materials. The main objective of this work was to characterise the greenhouse production systems in the West region of Portugal, in order to evaluate the energetic consumptions (direct and indirect), the GHH emissions, the production costs and the farmer’s income. With this work the mostly important inputs were identified, allowing proposing alternative measures to improve efficiency and sustainability. All the data was obtained by surveys performed directly with growers, previously selected to be representative of the crop practices and greenhouse type of the region. However, more research should be performed in order to develop and to test technologies capable to improve resources use efficiency in greenhouse production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This document addresses the direct and indirect use of energy in European organic greenhouse horticulture (OGH) with the aim of reviewing available means for making it more environmental friendly and identifying knowledge gaps that should be addressed to attain this aim. The first observation is that there is no common regulation for energy use in OGH, which is not unexpected, since the need for climatisation is not uniformly distributed in the EU (and outside). Accordingly, the EU directive on organic agriculture does not set limitations on the use of energy, but rather promotes the responsible use of energy and of natural resources. The restrictions and rules of most private standards are slightly more stringent. Some standards have specific restrictions on the amount and sources of energy and/or on the seasonal use of energy for heating. Some standards also address processes that may affect (in)direct energy use, such as cultivation methods, mulching, lighting and growing media or substrates. However, most private standards have no or little restrictions or regulations on energy use. Accordingly, it should not surprise that very little quantitative information is available about energy use in OGH. In the present document we have filled the gaps with data with estimates drawn on energy use in conventional greenhouses. With respect to ongoing research, whereas many of the present research results about energy use and saving in conventional greenhouses are relevant (and also applied) in OGH, little research is devoted to address the energy use that is peculiar to OGH, particularly energy use for humidity control. In short, there are still a lot of knowledge gaps to improve quality and to lower energy use in organic greenhouses. The purpose of this document is a summary of present relevant knowledge about energy use and energy saving and of the perspective for improvement. In particular, the goal is to make an overview on the methods and technologies which can be used to reduce the energy use in OGH. We start from the assumption that methods and technologies that are used for reducing direct and indirect energy in conventional greenhouses can also be applied in organic greenhouses. Research on reducing energy use in conventional greenhouses is also more widely available because the area of conventional greenhouse horticulture is much larger than the area of OGH. When implementing these methods and techniques we should take into account the specific characteristics of organic agriculture like soil-based cultivation, use of organic fertilizers and the limited use of crop protection products. This document is organised as follows: first we report the results of a survey about energy use and relevant standards in the countries participating to the COST action (chapter 1); then we review the energy use for climatisation: heating (chapter 2) and humidity (chapter 3). In chapter 4 we review the available design and management means that would either reduce energy use and/or increase energy use efficiency by increasing productivity of OGH. In chapter 5 we present a short summary of existing information on indirect energy use, that is the energy required to manufacture production means (greenhouse structure and cover, fertilisers, equipment etc.) and for crop protection, particularly steaming, and briefly discuss possible savings. Finally (chapter 6) we review briefly the potential for application of renewable energy sources in OGH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decentralized and regional load-frequency control of power systems operating in normal and near-normal conditions has been well studied; and several analysis/synthesis approaches have been developed during the last few decades. However in contingency and off-normal conditions, the existing emergency control plans, such as under-frequency load shedding, are usually applied in a centralized structure using a different analysis model. This paper discusses the feasibility of using frequency-based emergency control schemes based on tie-line measurements and local information available within a control area. The conventional load-frequency control model is generalized by considering the dynamics of emergency control/protection schemes and an analytic approach to analyze the regional frequency response under normal and emergency conditions is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the analysis of shaft voltage in different configurations of a doubly fed induction generator (DFIG) and an induction generator (IG) with a back-to-back inverter in wind turbine applications. Detailed high frequency model of the proposed systems have been developed based on existing capacitive couplings in IG & DFIG structures and common mode voltage sources. In this research work, several arrangements of DFIG based wind energy conversion systems (WES) are investigated in case of shaft voltage calculation and its mitigation techniques. Placements of an LC line filter in different locations and its effects on shaft voltage elimination are studied via Mathematical analysis and simulations. A pulse width modulation (PWM) technique and a back-to-back inverter with a bidirectional buck converter have been presented to eliminate the shaft voltage in a DFIG wind turbine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel topology to generate high voltage with utilization of slow and fast power switches. New concepts used in this topology include numbers of diode-capacitor units in parallel with resonant circuits which are connected to a positive buck-boost converter. The resonant circuit reverses the voltage polarity of the capacitors. This configuration has capability of generating a flexible high voltage with certain number of capacitors. The advantage of this topology is to use slow switches, less number of diodes and capacitors compare to Marx generator. Simulations have been performed to verify the proposed topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel topology for the generation of high voltage pulses that uses both slow and fast solid-state power switches. This topology includes diode-capacitor units in parallel with commutation circuits connected to a positive buck-boost converter. This enables the generation of a range of high output voltages with a given number of capacitors. The advantages of this topology are the use of slow switches and a reduced number of diodes in comparison with conventional Marx generator. Simulations performed for single and repetitive pulse generation and experimental tests of a prototype hardware verify the proposed topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is the first outdoor test of small-scale dye sensitized solar cells (DSC) powering a standalone nanosensor node. A solar cell test station (SCTS) has been developed using standard DSC to power a gas nanosensor, a radio transmitter, and the control electronics (CE) for battery charging. The station is remotely monitored through wired (Ethernet cable) or wireless connection (radio transmitter) in order to evaluate in real time the performance of the solar cells powering a nanosensor and a transmitter under different weather conditions. We analyze trends of energy conversion efficiency after 60 days of operation. The 408 cm2 active surface module produces enough energy to power a gas nanosensor and a radio transmitter during the day and part of the night. Also, by using a variable programmable load we keep the system working on the maximum power point (MPP) quantifying the total energy generated and stored in a battery. Although this technology is at an early stage of development, these experiments provide useful data for future outdoor applications such as nanosensor network nodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dye-sensitised solar cells have emerged as an important developing technology for low-cost solar energy conversion and a crucial element of these is the dye, responsible for light harvesting and control of interfacial electron-transfer processes.[1] A number of examples of dye exist in the literature which link a ruthenium polypyridyl complex to another platinum group metal complex such as Ru (II), Os (II), Re (I) or Rh (III) via a bridging ligand.[2-6] These systems are often referred to as heterosupramolecular triads when adsorbed on the surface of TiO2 as the semiconductor becomes an active component in the system. A number of problems can arise with these types of sensitisers, for example if a flexible linker, e.g. bis-pyridylethane, is used to couple the two complexes it can be hard to control the orientation of the whole dye. This may lead to the resultant dye cation hole being closer to the surface than desired, and hence the long-lived charge-separated state is not achieved. In addition the size of these dyes may be much larger than that of a mononuclear complex and can lead to poor pore filling on the TiO2 and lower dye coverage, leading to a lower efficiency cell.[7] Despite these issues, efficient charge-separation has been achieved with polynuclear complexes and a long-lived state on the millisecond timescale has been observed for a trinuclear ruthenium complex.[8]