909 resultados para Diatomite and effluent
Resumo:
The efficacy of supported covers was investigated under field conditions using a series of prototypes deployed on an anaerobic pond treating typical piggery waste. Research focused on identifying effective cover support materials and deployment methods, quantifying odour reduction, and estimating the life expectancy of various permeable cover materials. Over a 10-month period, median odour emission rates were five to eight times lower from supported straw cover surfaces and a non-woven, spun fibre polypropylene weed control material than from the adjacent uncovered pond surface. While the straw covers visually appeared to degrade very rapidly, they continued to reduce odour emissions effectively. The polypropylene cover appeared to offer advantages from the perspectives of cost, reduced maintenance and ease of manufacture.
Resumo:
A 2000-03 study to improve irrigation efficiency of grassed urban public areas in northern Australia found it would be difficult to grow most species in dry areas without supplementary watering. Sporoboulus virginicus and sand couch, Zoysia macrantha, were relatively drought-tolerant. Managers of sporting fields, parks and gardens could more than halve their current water use by irrigating over a long cycle, irrigating according to seasonal conditions and using grasses with low water use and sound soil management practices that encourage deep rooting. The use of effluent water provides irrigation and fertiliser cost savings and reduced nitrogen and phosphorus discharge to local waterways. Projected savings are $8000/ha/year in water costs for a typical sporting field.
Resumo:
Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.
Resumo:
This joint DPI/Burdekin Shire Council project assessed the efficacy of a pilot-scale biological remediation system to recover Nitrogen (N) and Phosphorous (P) nutrients from secondary treated municipal wastewater at the Ayr Sewage Treatment Plant. Additionally, this study considered potential commercial uses for by-products from the treatment system. Knowledge gained from this study can provide directions for implementing a larger-scale final effluent treatment protocol on site at the Ayr plant. Trials were conducted over 10 months and assessed nutrient removal from duckweed-based treatments and an algae/fish treatment – both as sequential and as stand-alone treatment systems. A 42.3% reduction in Total N was found through the sequential treatment system (duckweed followed by algae/fish treatment) after 6.6 days Effluent Retention Time (E.R.T.). However, duckweed treatment was responsible for the majority of this nutrient recovery (7.8 times more effective than algae/fish treatment). Likewise, Total P reduction (15.75% reduction after 6.6 days E.R.T.) was twice as great in the duckweed treatment. A phytoplankton bloom, which developed in the algae/fish tanks, reduced nutrient recovery in this treatment. A second trial tested whether the addition of fish enhanced duckweed treatment by evaluating systems with and without fish. After four weeks operation, low DO under the duckweed blanket caused fish mortalities. Decomposition of these fish led to an additional organic load and this was reflected in a breakdown of nitrogen species that showed an increase in organic nitrogen. However, the Dissolved Inorganic Nitrogen (DIN: ammonia, nitrite and nitrate) removal was similar between treatments with and without fish (57% and 59% DIN removal from incoming, respectively). Overall, three effluent residence times were evaluated using duckweed-based treatments; i.e. 3.5 days, 5.5 days and 10.4 days. Total N removal was 37.5%, 55.7% and 70.3%, respectively. The 10.4-day E.R.T. trial, however, was evaluated by sequential nutrient removal through the duckweed-minus-fish treatment followed by the duckweed-plus-fish treatment. Therefore, the 70.3% Total N removal was lower than could have been achieved at this retention time due to the abovementioned fish mortalities. Phosphorous removal from duckweed treatments was greatest after 10.4-days E.R.T. (13.6%). Plant uptake was considered the most important mechanism for this P removal since there was no clay substrate in the plastic tanks that could have contributed to P absorption as part of the natural phosphorous cycle. Duckweed inhibited phytoplankton production (therefore reducing T.S.S) and maintained pH close to neutral. DO beneath the duckweed blanket fell to below 1ppm; however, this did not limit plant production. If fish are to be used as part of the duckweed treatment, air-uplifts can be installed that maintain DO levels without disturbing surface waters. Duckweed grown in the treatments doubled its biomass on average every 5.7 days. On a per-surface area basis, 1.23kg/m2 was harvested weekly. Moisture content of duckweed was 92%, equating to a total dry weight harvest of 0.098kg/m2/week. Nutrient analysis of dried duckweed gave an N content of 6.67% and a P content of 1.27%. According to semi-quantitative analyses, harvested duckweed contained no residual elements from the effluent stream that were greater than ANZECC toxicant guidelines proposed for aquaculture. In addition, jade perch, a local aquaculture species, actively consumed and gained weight on harvested duckweed, suggesting potential for large-scale fish production using by-products from the effluent treatment process. This suggests that a duckweed-based system may be one viable option for tertiary treatment of Ayr municipal wastewater. The tertiary detention lagoon proposed by the Burdekin Shire Council, consisting of six bays approximately 290 x 35 metres (x 1.5 metres deep), would be suitable for duckweed culture with minor modification to facilitate the efficient distribution of duckweed plants across the entire available growing surface (such as floating containment grids). The effluent residence time resulting from this proposed configuration (~30 days) should be adequate to recover most effluent nutrients (certainly N) based on the current trial. Duckweed harvest techniques on this scale, however, need to be further investigated. Based on duckweed production in the current trial (1.23kg/m2/week), a weekly harvest of approximately 75 000kg (wet weight) could be expected from the proposed lagoon configuration under full duckweed production. A benefit of the proposed multi-bay lagoon is that full lagoon production of duckweed may not be needed to restore effluent to a desirable standard under the present nutrient load, and duckweed treatment may be restricted to certain bays. Restored effluent could be released without risk of contaminating the receiving waterway with duckweed by evacuating water through an internal standpipe located mid-way in the water column.
Resumo:
This report summarises work conducted by the QDPI, in partnership with the South Burdekin Water Board (SBWB) and the Burdekin Shire Council (BSC) between 2001 and 2003. The broad aim of the research was to assess the potential of native fish as biocontrol agents for noxious weeds, as part of an integrated program for managing water quality in the Burdekin Irrigation Area. A series of trials were conducted at, or using water derived from, the Sandy Creek Diversion near Groper Creek (lower Burdekin delta). Trials demonstrated that aquatic weeds play a positive role in trapping transient nutrients, until such time that weed growth becomes self-shading and weed dieback occurs, which releases stored nutrients and adversely affects water quality. Transient nutrient levels (av. TN<0.5mg/L; av. TP<0.1mg/L) found in the irrigation channel during the course of this research were substantially lower than expected, especially considering the intensive agriculture and sewage effluent discharge upstream from the study site. This confirms the need to consider the control of weeds rather than complete weed extermination when formulating management plans. However, even when low nutrient levels are available, there is competitive exploitation of habitat variables in the irrigation area leading to succession and eventual domination by certain weed species. During these trials, we have seen filamentous algae, phytoplankton, hyacinth and curled pondweed each hold competitive advantage at certain points. However without intervention, floating weeds, especially hyacinth, ultimately predominate in the Burdekin delta due to their fast propagation rate and their ability to out-shade submerged plants. We have highlighted the complexity of interactions in these highly disturbed ecosystems in that even if the more prevalent noxious weeds are contained, other weed species will exploit the vacant niche. This complexity places stringent requirements on the type of native fish that can be used as biocontrol agents. Of the seven fish species identified with herbivorous trophic niches, most target plankton or algae and do not have the physical capacity to directly eat the larger macrophytes of the delta. We do find however that following mechanical weed harvesting, inoculative releases of fish can slow the rate of hyacinth recolonisation. This occurs by mechanisms in addition to direct weed consumption, such as disturbing growth surfaces by grazing on attached biofilms. Predation by birds and water rats presents another impediment to the efficacy of large-scale releases of fish. However, alternative uses of fish in water quality management in the Burdekin irrigation area are discussed.
Resumo:
To experimentally investigate the potential of mixed species polycultures for bioremediation of nutrient rich prawn farm effluent, a series of experiments was performed with banana prawns Penaeus (Fenneropenaeus) merguiensis, sea mullet Mugil cephalus and rabbitfish Siganus nebulosus to determine their compatibilities during particular life stages. Rabbitfish demonstrated a high tendency to prey upon banana prawn juveniles when no other food was available. Mullet of various sizes did not appear to prey upon banana prawn postlarvae (PL16) or juveniles in a fed or unfed environment. The study confirms the good potential for mullet and banana prawn polycultures.
Resumo:
To experimentally investigate the effect of the “SKIM” mechanical foam fractionator on suspended material and the nutrient levels in prawn farm effluent, a series of standardised short-term treatments were applied to various effluent types in a static 10,000-litre water body. Prawn pond effluents were characterised by watercolour and dominance of phytoplankton species. Three effluent types were tested, namely 1) particulate-rich effluent with little apparent phytoplankton, 2) green mircoalgal bloom predominately made up of single celled phytoplankton, and 3) brown microalgal bloom with higher prevalence of diatoms. The effluent types were similar (P>0.05) in non-volatile particulate material, and nitrate/nitrite but varied from each other in the following ways: 1) The particulate-rich effluents were lower (P<0.05) in volatile solids (compared to brown blooms), total Kjeldahl nitrogen, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a (compared to both green and brown blooms). 2) The brown blooms were higher (P<0.05) in ammonia (compared to green blooms), total nitrogen and total phosphorus (compared to both green and particulate-rich effluent), but were lower (P<0.05) in inorganic phosphorus (compared to both green and particulate-rich effluent). 3) The green blooms were higher (P<0.05) in dissolved (both organic and inorganic) phosphorus (compared to both brown and particulate-rich effluents). Although the effluent types varied significantly in these aspects the effect of the Skim treatment was similar for all parameters measured except total phosphorus. Bloom type and Skim-treatment period significantly (P<0.05) affected total Kjeldahl phosphorus concentrations. For all effluent types there was a continuous significant reduction (P<0.05) in total Kjeldahl phosphorus during the initial 6-hour treatment period. Levels of total suspended solids and volatile suspended solids in all effluent types were significantly (P<0.05) reduced in the first 2 hours but not thereafter. Non-volatile suspended solids were also significantly (P<0.05) reduced in the first 2 hours (30 to 40 % reduction) and a further 40% reduction occurred in the particulate-rich effluent over the next 2 hours. Mean values for total ammonia, dissolved organic nitrogen, total Kjeldahl nitrogen, total nitrogen, chlorophyll a and dissolved organic or inorganic phosphorus levels were not significantly (P>0.05) affected by the Skim unit in any bloom type during the initial 6 hours of testing. Nevertheless, non-significant nitrogen reductions did occur. Foam production by the Skim unit varied with different blooms, resulting in different concentrate volumes and different end points for separate experiments. Concentrate volumes were generally high for the particulate-rich and green blooms (175 – 370 litres) and low for the brown blooms (25 – 80 litres). This was due to the low tendency of the brown bloom to produce foam. This generated higher nutrient concentrations in the associated condensed foam, but may have limited the treatment efficiency. The results suggest that in this application, the Skim unit did not remove micro-algae as effectively as was anticipated. However, it was effective at removing other suspended solids. Considering these attributes and the other uses of this machinery documented by the manufactures, the unit’s oxygenation mixing capacities coupled with inorganic solids removal may provide a suitable mechanism for construction of a continuously mixed bioreactor that utilises the filtration and profit making abilities of bivalves.
Resumo:
This project follows on from and utilises a floating cover currently being installed on the primary effluent pond at a southern piggery.
Resumo:
The Sedimentation and Evaporation Pond System (SEPS) is a low-capital effluent management system based primarily on shallow pond sedimentation of effluent solids and annual evaporation of the liquid to retrieve dried solids.
Resumo:
Screening of wastewater effluents from municipal and industrial wastewater treatment plants with biotests showed that the treated wastewater effluents possess only minor acute toxic properties towards whole organisms (e.g. bacteria, algae, daphnia), if any. In vitro tests (sub-mitochondrial membranes and fish hepatocytes) were generally more susceptible to the effluents. Most of the effluents indicated the presence of hormonally active compounds, as the production of vitellogenin, an egg yolk precursor protein, was induced in fish hepatocytes exposed to wastewater. In addition, indications of slight genotoxic potential was found in one effluent concentrate with a recombinant bacteria test. Reverse electron transport (RET) of mitochondrial membranes was used as a model test to conduct effluent assessment followed by toxicant characterisations and identifications. Using a modified U.S. EPA Toxicity Identification Evaluation Phase I scheme and additional case-specific methods, the main compound in a pulp and paper mill effluent causing RET inhibition was characterised to be an organic, relatively hydrophilic high molecular weight (HMW) compound. The toxicant could be verified as HMW lignin by structural analyses using nuclear magnetic resonance. In the confirmation step commercial and in-house extracted lignin products were used. The possible toxicity related structures were characterised by statistical analysis of the chemical breakdown structures of laboratory-scale pulping and bleaching effluents and the toxicities of these effluents. Finally, the biological degradation of the identified toxicant and other wastewater constituents was evaluated using bioassays in combination with chemical analyses. Biological methods have not been used routinely in establishing effluent discharge limits in Finland. However, the biological effects observed in this study could not have been predicted using only routine physical and chemical effluent monitoring parameters. Therefore chemical parameters cannot be considered to be sufficient in controlling effluent discharges especially in case of unknown, possibly bioaccumulative, compounds that may be present in small concentrations and may cause chronic effects.
Resumo:
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.
Resumo:
Intensive pig and poultry farming in Australia can be a source of pathogens with implications for food-safety and/or human illness. Seven studies were undertaken with the following objectives: · Assess the types of zoonotic pathogens in waste · Assess the transfer of pathogens during re-use both within the shed and externally in the environment · The potential for movement of pathogens via aerosols In the first and second studies the extent of zoonotic pathogens was evaluated in both piggery effluent and chicken litter and Salmonella and Campylobacter were detected in both wastes. In the third study the dynamics of Salmonella during litter re-use was examined and results showed a trend for lower Salmonella levels and serovar diversity in re-used litter compared to new litter. Thus, re-use within the poultry farming system posed no increased risk. The fourth study addressed the direct risks of pathogens to farm workers due to reuse of piggery effluent within the pig shed. Based on air-borne Escherichia coli (E. coli) levels, re-using effluent did not pose a risk. In the fifth study high levels of Arcobacter spp. were detected in effluent ponds and freshly irrigated soils with potential food-safety risks during the irrigation of food-crops and pasture. The sixth and seventh studies addressed the risks from aerosols from mechanically ventilated sheds. Staphylococci were shown to have potential as markers, with airborne levels gradually dropping and reaching background levels at 400 m distance. Salmonella was detected (at low levels) both inside and outside the shed (at 10 m). Campylobacter was detected only once inside the shed during the 3-year period (at low levels). Results showed there was minimal risk to humans living adjacent to poultry farms This is the first comprehensive analysis studying key food-safety pathogens and potential public health risks associated with intensively farmed pigs and poultry in Australia.
Resumo:
Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Separation of dissolved heavy metals such-as Cr(VI) and Cu(II) from electroplating effluents using a new technique of emulsion-free liquid membrane (EFLM) has been studied. Experimental results show that nearly 95% extraction is obtained resulting in stripping phase enrichment up to 50 times relative to feed. It is also found that emulsion-free liquid membranes are highly efficient and superior to other types of liquid membranes.
Resumo:
A waste fungal biomass containing killed cells of Aspergillus niger was efficiently used in the removal of toxic metal ions such as nickel, calcium, iron and chromium from aqueous solutions. The role of different parameters such as initial metal ion concentration, solution pH and biomass concentration on biosorption capacity was established. The maximum metal uptake was found to be dependent on solution pH and increased with biomass loading upto 10g/L. The adsorption densities for various metal ions could be arranged as Ca>Cr (III)>Ni>Fe>Cr (VI). The effect of the presence of various metal ions in binary, ternary and quaternary combinations on biosorption was also assessed. Ni uptake was significantly affected, while that of Cr (VI) the least, in the presence of other metal ions. Uptake of base metals from an industrial cyanide effluent was studied using different species of fungi such as Aspergillus niger, Aspergillus terreus and Penicillium funiculosum and yeast such as Saccharomyces cerevisiae which were isolated from a gold mine. Traces of gold present in the cyanide effluent could be efficiently recovered. Among the four base metal contaminants present in the cyanide effluent, zinc was found to be most efficiently biosorbed, followed by iron, copper and lead. The role of both living and dead biomass on biosorption was distinguished and probable mechanisms illustrated.