965 resultados para Diabetes mellitus tipo 1. Antígeno leucocitário humano. HLA-DR e DQ. Susceptibilidade genética
Resumo:
Position 57 in the beta chain of HLA class II molecules maintains an Asp/non-Asp dimorphism that has been conserved through evolution and is implicated in susceptibility to some autoimmune diseases. The latter effect may be due to the influence of this residue on the ability of class II alleles to bind specific pathogenic peptides. We utilized highly homologous pairs of both DR and DQ alleles that varied at residue 57 to investigate the impact of this dimorphism on binding of model peptides. Using a direct binding assay of biotinylated peptides on whole cells expressing the desired alleles, we report several peptides that bind differentially to the allele pairs depending on the presence or absence of Asp at position 57. Peptides with negatively charged residues at anchor position 9 bind well to alleles not containing Asp at position 57 in the beta chain but cannot bind well to homologous Asp-positive alleles. By changing the peptides at the single residue predicted to interact with this position 57, we demonstrate a drastically altered or reversed pattern of binding. Ala analog peptides confirm these interactions and identify a limited set of interaction sites between the bound peptides and the class II molecules. Clarification of the impact of specific class II polymorphisms on generating unique allele-specific peptide binding "repertoires" will aid in our understanding of the development of specific immune responses and HLA-associated diseases.
Resumo:
The objective of this study was to determine the frequencies of autoantibodies to heterogeneous islet-cell cytoplasmic antigens (ICA), glutamic acid decarboxylase(65) (GAD(65)A), insulinoma-associated antigen-2 (IA-2A) and insulin (IAA)-and human leukocyte antigen (HLA) class II markers (HLA-DR and -DQ) in first degree relatives of heterogeneous Brazilian patients with type I diabetes(T1DM). A major focus of this study was to determine the influence of age, gender, proband characteristics and ancestry on the prevalence of autoantibodies and HLA-DR and -DQ alleles on disease progression and genetic predisposition to T1DM among the first-degree relatives. IAA, ICA, GAD(65)A, IA-2A and HLA- class II alleles were determined in 546 first-degree-relatives, 244 siblings, 55 offspring and 233 parents of 178 Brazilian patients with T1DM. Overall, 8.9% of the relatives were positive for one or more autoantibodies. IAA was the only antibody detected in parents. GAD(65) was the most prevalent antibody in offspring and siblings as compared to parents and it was the sole antibody detected in offspring. Five siblings were positive for the IA-2 antibody. A significant number (62.1%) of siblings had 1 or 2 high risk HLA haplotypes. During a 4-year follow-up study, 5 siblings (expressing HLA-DR3 or -DR4 alleles) and 1 offspring positive for GAD(65)A progressed to diabetes. The data indicated that the GAD(65) and IA-2 antibodies were the strongest predictors of T1DM in our study population. The high risk HLA haplotypes alone were not predictive of progression to overt diabetes.
Resumo:
OBJECTIVE: To evaluate the growth and body composition of children and adolescents with type 1 diabetes mellitus (T1DM). SUBJECTS AND METHODS: A cohort of 44 patients with T1DM were followed up for approximately four years and compared with a control group. Weight, height, body mass index (BMI), body fat percentage (BF%), fat mass index, waist circumference (WC) and waist-height ratio were determined. RESULTS: In females, in the first evaluation, BF% was lower in patients than in controls, while in the second evaluation, mean WC was higher in patients than in controls. In males, height of the patients was lower in the first evaluation, while body mass index (BMI) was higher in the second one. We did not find any differences among the changes in height, weight and BMI z-scores and BF% or in the distribution of those z-scores between the two evaluations, in both groups. Multiple regression analysis found differences in BMI and waist-height ratio in both sexes and also in WC in females. CONCLUSION: The patients had adequate growth but showed discrepancy in their body composition during the study.
Resumo:
La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.
Resumo:
O diabetes mellitus tipo 2 é considerado como uma doença crônica não-transmissível de etiogênese diversificada que leva a muitas complicações: perda da qualidade de vida, bem como perda dos anos produtivos do ser humano. O objetivo deste estudo foi o de identificar, por meio da revisão narrativa, as dificuldades enfrentadas pelos pacientes portadores de diabetes mellitus tipo 2. Os dados foram coletados na biblioteca virtual de saúde. São discutidos os fatores fisiológicos, nutricionais e sócio-cultural que dificultam a adesão ao tratamento do diabetes mellitus tipo 2. Esse estudo permitiu identificar que as morbidades apresentam custos dispendiosos e que há hábitos nutricionais são um dos grandes dificultadores para o tratamento.
Resumo:
A Diabetes Mellitus Tipo II é uma das doenças de maior prevalência no mundo, com 4,4% da população mundial apresentando esta comorbidade, sendo que em Uberlândia, Minas Gerais, no Bairro Ipanema 1, na população adscrita da Unidade Básica de Saúde da Família Ipanema 1 também se verifica prevalência de 4,16%. Dentre os pacientes que realizam acompanhamento e tratamento da Diabetes Mellitus Tipo II na unidade observa-se uma taxa de 40% de má aderência ao tratamento. Este projeto tem como objetivo elaborar um plano de intervenção visando aumentar a adesão ao tratamento de Diabetes Mellitus tipo II na população adscrita na Unidade Básica de Saúde da Família Ipanema 1 no Município de Uberlândia. Para a elaboração do plano de intervenção foi utilizado o Método do Planejamento Estratégico Situacional. Foi feita pesquisa bibliográfica nas bases de dados informatizadas que trabalham com políticas de saúde (Organização Mundial da Saúde, Ministério da Saúde e Sociedade Brasileira de Diabetes) e da LILACS com os descritores: adesão à medicação, diabetes mellitus e promoção da saúde. É importante ressaltar que a adesão ao tratamento não depende apenas do paciente, mas de trabalho conjunto dos profissionais da Equipe da Estratégia Saúde da Família. A execução do plano de intervenção permitiu melhoria do cuidado aos pacientes com Diabetes Mellitus Tipo II.
Resumo:
Leaves of Passiflora alata Curtis were characterized for their antioxidant capacity. Antioxidant analyses of DPPH, FRAP, ABTS, ORAC and phenolic compounds were made in three different extracts: aqueous, methanol/acetone and ethanol. Aqueous extract was found to be the best solvent for recovery of phenolic compounds and antioxidant activity, when compared with methanol/acetone and ethanol. To study the anti-inflammatory properties of this extract in experimental type 1 diabetes, NOD mice were divided into two groups: the P. alata group, treated with aqueous extract of P. alata Curtis, and a non-treated control group, followed by diabetes expression analysis. The consumption of aqueous extract and water ad libitum lasted 28 weeks. The treated-group presented a decrease in diabetes incidence, a low quantity of infiltrative cells in pancreatic islets and increased glutathione in the kidney and liver (p<0.05), when compared with the diabetic and non-diabetic control-groups. In conclusion, our results suggest that the consumption of aqueous extract of P. alata may be considered a good source of natural antioxidants and compounds found in its composition can act as anti-inflammatory agents, helping in the control of diabetes.
Resumo:
This paper presents a study of families of children with type 1 diabetes mellitus, emphasizing the identification of social supports and networks to strengthen interventions aimed at health promotion. The approach selected was a qualitative research, using a case study design. Four families of children with diabetes type 1 were studied, totalling seven participants. Data were collected between April and June 2007, through in-depth interviews and the construction of a genogram and an ecomap. The results presented the families` characterization and testimonies grouped in the following categories: social support, social networks and family roles. To promote care in practice, there is a need to identify the characteristics of each family and resources available that provide better living conditions. We concluded that identifying supports and social networks allows for more personalized care delivery to each family with a view to health promotion.
Resumo:
A Diabetes Mellitus (DM) é uma doença crónica que apresenta como principais factores de risco: obesidade, gordura abdominal e história familiar. Para avaliar o risco de desenvolver DM tipo 2 dentro de 10 anos aplicou-se uma ficha de avaliação onde se verificou que 12,5% apresentam risco sensivelmente elevado e 3,6% risco moderado. No entanto esta população já apresenta alguns factores de risco tais como IMC elevado, perímetro abdominal aumentado ou muito aumentado, baixa actividade física, alimentação deficiente em vegetais e frutas e antecedentes familiares com DM.
Resumo:
We describe the case of a 22-year-old black female with type 1 diabetes mellitus diagnosed when she was 12 years old. She first presented (March 1994) with pustules and ulcerations on the upper and lower limbs, trunk and scalp at the age 17. The diagnosis of pyoderma gangrenosum was made. Since presentation, changes in liver function were detected and subsequent study led to the diagnosis of sclerosing cholangitis. The diagnosis of ulcerative colitis was made after colonoscopy. Partial response was obtained with minocycline and clofazimine, but treatment with 5-aminosalicylic acid achieved no improvement of the ulcerations. Liver transplantation, followed by immunosuppressive therapy led to complete regression of the cutaneous lesions.
Resumo:
RESUMO: Raional: A persistência à terapêutica é o tempo em qualquer antidiabético oral, desde o seu início até à descontinuação de todas as medicações ou até ao fim do período do estudo. Os objetivos deste estudo foi a análise da persistência à terapêutica no segundo e terceiro anos após início do tratamento em doentes adultos diagnosticados na região de Lisboa e Vale do Tejo e determinar o efeito de determinadas variáveis na persistência a longo prazo. Métodos: Um estudo retrospetivo não interventivo foi desenhado com base nos dados a obter do SIARS (prescrições e aquisições na farmácia) e Pordata. A persistência foi quantificada como a percentagem de doentes que continuam a adquirir pelo menos um antidiabético oral ao segundo e terceiro anos após a compra da primeira receita. A associação entre a persistência e o segundo e terceiro anos com cada uma das co-variáveis foi aferido pelo teste qui-quadrado e os odd ratios foram calculados com recurso a um modelo de regressão logística. Resultados: A persistência à terapêutica obtida foi de 80% e 62% para o segundo e terceiro anos após início da terapêutica. Odd ratios para primeiro e segundo ano: número de grupos farmacoterapêuticos diferentes (OR = 2.167, 1.807 – 2.598, p = 0.000 / OR = 1.863, 1.621 – 2.142, p = 0.000); idade (OR = 0.914, 0.772 – 1.081, p = 0.294 / OR = 0.875, 0.764 – 1.002, p = 0.054); sexo (OR = 1.163, 0.983 – 1.377, p = 0.079); número de diferentes prescritores (OR = 3.594, 3.030 – 4.262, p = 0.000 / OR = 2.167, 1.886 – 2.491, p = 0.000); instituição de prescrição (OR = 0.725, 0.698 – 0.753, p = 0.000 / OR = 0.683, 0.650 – 0.717, p = 0.000); grupo farmacoterapêutico (OR = 1.056, 1.043 – 1.069, p = 0.000 / OR = 1.077, 1.060 – 1.095, p = 0.000); relação com o médico (OR = 0.834, 0.816 – 0.852, p = 0.000 / OR = 0.799, 0.777 – 0.821, p = 0.000) e custo médio mensal por grupo farmacoterapêutico (OR = 0.954, 0.942 – 0.968, p = 0.000 / OR = 0.930, 0.914 – 0.947, p = 0.000). Conclusões: O valor da persistência à terapêutica no segundo ano é ligeiramente acima do que é mencionado na literatura e não existem dados para comparar os resultados do terceiro ano. Relativamente ao efeito das co-variáveis no segundo e terceiro anos após o início do tratamento, os resultados são sobreponíveis, sendo que o sexo não está associado à persistência ao terceiro ano.----------------------------------ABSTRACT: Background: Therapy persistence is the time on any antidiabetic medication, from initiation of therapy to discontinuation of all medications or the end of the study period. The aim of the study was to analyse the therapy persistence in the second and third years after treatment initiation in newly diagnosed adult patients in the Lisbon and Tagus Valley region and to determine the effect of several co-variables in the long term persistence. Methods: A retrospective non-interventional study based on SIARS data (drug prescriptions and acquisitions) and Pordata was designed. Persistence was quantified as the percentage of patients that continued to purchase at least one type of antidiabetic at year 2 and 3 after the date of first prescription acquisition. Association between persistence at second and third years with each of the other co-variables were verified by using the Chi-Square test and odds ratio were calculated using a regression logistic model. Results: Therapy persistence obtained was 80% and 62% for the second and third years after treatment initiation. Odd ratios for second and third years: number of different pharmacotherapeutic groups (OR = 2.167, 1.807 – 2.598, p = 0.000 / OR = 1.863, 1.621 – 2.142, p = 0.000); age (OR = 0.914, 0.772 – 1.081, p = 0.294 / OR = 0.875, 0.764 – 1.002, p = 0.054); gender (OR = 1.163, 0.983 – 1.377, p = 0.079); number of different prescribers (OR = 3.594, 3.030 – 4.262, p = 0.000 / OR = 2.167, 1.886 – 2.491, p = 0.000); institution of prescription (OR = 0.725, 0.698 – 0.753, p = 0.000 / OR = 0.683, 0.650 – 0.717, p = 0.000); pharmacotherapeutic group (OR = 1.056, 1.043 – 1.069, p = 0.000 / OR = 1.077, 1.060 – 1.095, p = 0.000); relationship with the physician (OR = 0.834, 0.816 – 0.852, p = 0.000 / OR = 0.799, 0.777 – 0.821, p = 0.000) and average cost per month and per pharmacotherapeutic group (OR = 0.954, 0.942 – 0.968, p = 0.000 / OR = 0.930, 0.914 – 0.947, p = 0.000). Conclusions: Second year therapy persistence value is slightly above of what is referenced in literature and no data was found to compare the third year value. Regarding the effect of the co-variables analysed at second and third years after treatment initiation, the results were overlapping with gender being not associated with persistence at the third year.
Resumo:
RESUMO - Introdução: A diabetes mellitus e a hipertensão arterial são problemas de saúde de elevada prevalência em Portugal. A sua distribuição geográfica e social é pouco conhecida, comprometendo o desenho e implementação de políticas de saúde. Assim, este estudo teve como objetivo avaliar a existência das desigualdades socioeconómicas na prevalência de diabetes mellitus tipo 2 e de hipertensão arterial, na população residente na região Norte de Portugal, no ano de 2013. Métodos: Foi realizado um estudo ecológico que analisou as 2028 freguesias da região Norte. Os dados foram obtidos através do Sistema de Informação das Administrações Regionais de Saúde e do Censos 2011. A associação entre os indicadores socioeconómicos e a prevalência destas doenças foi medida através da diferença de prevalências, do risco atribuível populacional, do índice relativo de desigualdades e pelo coeficiente de regressão. Resultados: A prevalência de diabetes mellitus tipo 2 e hipertensão arterial foi de 6,16% e 19,35%, respetivamente, e apresentou uma distribuição heterogénea entre freguesias (variando entre 0%-23,7% para a diabetes e 2,8%-66,7% para a hipertensão). A prevalência de ambas as doenças estava significativamente associada com o baixo nível educacional, baixa atividade em sector terciário, desemprego e baixo rendimento (com diferença de prevalências entre decis opostos de até 1,3% na diabetes e até 5,3% na hipertensão). Os determinantes socioeconómicos foram responsáveis até 20% da prevalência destas doenças na população. Conclusão: Estes resultados demonstram a existência de uma distribuição socioeconómica e geográfica heterogéneas e a necessidade de criação de políticas de saúde que atuem nas freguesias menos favorecidas.
Resumo:
FUNDAMENTO: A variabilidade da frequência cardíaca (VFC) é um importante indicador da modulação autonômica da função cardiovascular. A diabetes pode alterar a modulação autonômica danificando as entradas aferentes, dessa forma aumentando o risco de doenças cardiovasculares. Foram aplicados métodos analíticos não lineares para identificar os parâmetros associados com VFC indicativos de alterações na modulação autonômica da função cardíaca em pacientes diabéticos. OBJETIVO: Analisamos as diferenças nos padrões da VFC entre pacientes diabéticos e controles saudáveis pareados por idade, utilizando métodos não-lineares. MÉTODOS: Plot de Poincaré Lagged, autocorrelação e análise de flutuação destendenciada foram aplicados para analisar a VFC em registros de eletrocardiograma (ECG). RESULTADOS: A análise do gráfico de Poincaré lagged revelou alterações significativas em alguns parâmetros, sugestivas de diminuição da modulação parassimpática. O expoente de flutuação destendencionada derivado de um ajuste em longo prazo foi maior que o expoente em curto prazo na população diabética, o que também foi consistente com a diminuição do input parassimpático. A função de autocorrelação do desvio dos intervalos inter-batimento exibiu um padrão altamente correlacionado no grupo de diabéticos em comparação com o grupo controle. CONCLUSÃO: O padrão de VFC difere significativamente entre pacientes diabéticos e indivíduos saudáveis. Os três métodos estatísticos utilizados no estudo podem ser úteis para detectar o início e a extensão da neuropatia autonômica em pacientes diabéticos.
Resumo:
BACKGROUND A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.