959 resultados para Design visual
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Little is known about the situational contexts in which individuals consume processed sources of dietary sugars. This study aimed to describe the situational contexts associated with the consumption of sweetened food and drink products in a Catholic Middle Eastern Canadian community. A two-stage exploratory sequential mixed-method design was employed with a rationale of triangulation. In stage 1 (n = 62), items and themes describing the situational contexts of sweetened food and drink product consumption were identified from semi-structured interviews and were used to develop the content for the Situational Context Instrument for Sweetened Product Consumption (SCISPC). Face validity, readability and cultural relevance of the instrument were assessed. In stage 2 (n = 192), a cross-sectional study was conducted and exploratory factor analysis was used to examine the structure of themes that emerged from the qualitative analysis as a means of furthering construct validation. The SCISPC reliability and predictive validity on the daily consumption of sweetened products were also assessed. In stage 1, six themes and 40-items describing the situational contexts of sweetened product consumption emerged from the qualitative analysis and were used to construct the first draft of the SCISPC. In stage 2, factor analysis enabled the clarification and/or expansion of the instrument's initial thematic structure. The revised SCISPC has seven factors and 31 items describing the situational contexts of sweetened product consumption. Initial validation of the instrument indicated it has excellent internal consistency and adequate test-retest reliability. Two factors of the SCISPC had predictive validity for the daily consumption of total sugar from sweetened products (Snacking and Energy demands) while the other factors (Socialization, Indulgence, Constraints, Visual Stimuli and Emotional needs) were rather associated to occasional consumption of these products.
Resumo:
Background: We aimed to investigate the performance of five different trend analysis criteria for the detection of glaucomatous progression and to determine the most frequently and rapidly progressing locations of the visual field. Design: Retrospective cohort. Participants or Samples: Treated glaucoma patients with =8 Swedish Interactive Thresholding Algorithm (SITA)-standard 24-2 visual field tests. Methods: Progression was determined using trend analysis. Five different criteria were used: (A) =1 significantly progressing point; (B) =2 significantly progressing points; (C) =2 progressing points located in the same hemifield; (D) at least two adjacent progressing points located in the same hemifield; (E) =2 progressing points in the same Garway-Heath map sector. Main Outcome Measures: Number of progressing eyes and false-positive results. Results: We included 587 patients. The number of eyes reaching a progression endpoint using each criterion was: A = 300 (51%); B = 212 (36%); C = 194 (33%); D = 170 (29%); and E = 186 (31%) (P = 0.03). The numbers of eyes with positive slopes were: A = 13 (4.3%); B = 3 (1.4%); C = 3 (1.5%); D = 2 (1.1%); and E = 3 (1.6%) (P = 0.06). The global slopes for progressing eyes were more negative in Groups B, C and D than in Group A (P = 0.004). The visual field locations that progressed more often were those in the nasal field adjacent to the horizontal midline. Conclusions: Pointwise linear regression criteria that take into account the retinal nerve fibre layer anatomy enhances the specificity of trend analysis for the detection glaucomatous visual field progression.
Resumo:
Background: Carpal tunnel syndrome is the most common neuropathy in the upper extremity, resulting from the compression of the median nerve at wrist level. Clinical studies are essentials to present evidence on therapeutic resources use at early restoration on peripheral nerve functionality. Low-level laser therapy has been widely investigated in researches related to nerve regeneration. Therefore, it is suggested that the effect of low-level laser therapy associated with other conservative rehabilitation techniques may positively affect symptoms and overall hand function in compressive neuropathies such as carpal tunnel syndrome. The aim of this study is to evaluate the effectiveness of low-level laser therapy in addition to orthoses therapy and home orientations in patients with carpal tunnel syndrome. Methods/Design: Patients older than 18 years old will be included, with clinical diagnosis of carpal tunnel syndrome, excluding comorbidies. A physiotherapist will conduct intervention, with a blinding evaluator. Randomization will be applied to allocate the patients in each group: with association or not to low-level laser therapy. All of them will be submitted to orthoses therapy and home orientations. Outcome will be assessed through: pain visual analogic scale, Semmes Weinstein monofilaments (TM) threshold sensibility test, Pinch Gauge T, Boston Carpal Tunnel Questionnaire and two point discrimination test. Discussion: This paper describes the design of a randomized controlled trial, which aim to assess the effectiveness of conservative treatment added to low-level laser therapy for patients with carpal tunnel syndrome. Trial registration: Brazilian Clinical Trials Registry (ReBec) - 75ddtf / Universal Trial Number: U1111-1121-5184
Resumo:
Spatial orientation in relation to the gravitational axis is significantly important for the maintenance of the posture, gait and for most of the human's motor activities. The subjective visual vertical exam evaluates the individual's perception of vertical orientation. Objectives: The aims of this study were (1) to develop a virtual system to evaluate the subjective visual vertical exam, (2) to provide a simple tool to clinical practice and (3) to assess the subjective visual vertical values of h ealthy subjects using the new software. Study Design: observational cross-sectional study. Methods: Thirty healthy volunteers performed the subjective visual vertical exam in both static and dynamic conditions. The exam consisted in adjusting a virtual line in the vertical position using the computer mouse. For the static condition, the virtual line was projected in a white background. For the dynamic condition, black circles rotated in clockwise or counterclockwise directions. Six measurements were taken and the mean deviations in relation to the real vertical calculated. Results: The mean values of subjective visual vertical measurements were: static -0.372 degrees; +/- 1.21; dynamic clockwise 1.53 degrees +/- 1.80 and dynamic counterclockwise -1.11 degrees +/- 2.46. Conclusion: This software showed to be practical and accurate to be used in clinical routines.
Resumo:
Purpose: To investigate the rate of visual field and optic disc change in patients with distinct patterns of glaucomatous optic disc damage. Design: Prospective longitudinal study. Participants: A total of 131 patients with open-angle glaucoma with focal (n = 45), diffuse (n = 42), and sclerotic (n = 44) optic disc damage. Methods: Patients were examined every 4 months with standard automated perimetry (SAP, SITA Standard, 24-2 test, Humphrey Field Analyzer, Carl Zeiss Meditec, Dublin, CA) and confocal scanning laser tomography (CSLT, Heidelberg Retina Tomograph, Heidelberg Engineering GmbH, Heidelberg, Germany) for a period of 4 years. During this time, patients were treated according to a predefined protocol to achieve a target intraocular pressure (IOP). Rates of change were estimated by robust linear regression of visual field mean deviation (MD) and global optic disc neuroretinal rim area with follow-up time. Main Outcome Measures: Rates of change in MD and rim area. Results: Rates of visual field change in patients with focal optic disc damage (mean -0.34, standard deviation [SD] 0.69 dB/year) were faster than in patients with sclerotic (mean - 0.14, SD 0.77 dB/year) and diffuse (mean + 0.01, SD 0.37 dB/year) optic disc damage (P = 0.003, Kruskal-Wallis). Rates of optic disc change in patients with focal optic disc damage (mean - 11.70, SD 25.5 x 10(-3) mm(2)/year) were faster than in patients with diffuse (mean -9.16, SD 14.9 x 10(-3) mm(2)/year) and sclerotic (mean -0.45, SD 20.6 x 10(-3) mm(2)/year) optic disc damage, although the differences were not statistically significant (P = 0.11). Absolute IOP reduction from untreated levels was similar among the groups (P = 0.59). Conclusions: Patients with focal optic disc damage had faster rates of visual field change and a tendency toward faster rates of optic disc deterioration when compared with patients with diffuse and sclerotic optic disc damage, despite similar IOP reductions during follow-up. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2012; 119: 294-303 (C) 2012 by the American Academy of Ophthalmology.
Resumo:
This thesis starts showing the main characteristics and application fields of the AlGaN/GaN HEMT technology, focusing on reliability aspects essentially due to the presence of low frequency dispersive phenomena which limit in several ways the microwave performance of this kind of devices. Based on an equivalent voltage approach, a new low frequency device model is presented where the dynamic nonlinearity of the trapping effect is taken into account for the first time allowing considerable improvements in the prediction of very important quantities for the design of power amplifier such as power added efficiency, dissipated power and internal device temperature. An innovative and low-cost measurement setup for the characterization of the device under low-frequency large-amplitude sinusoidal excitation is also presented. This setup allows the identification of the new low frequency model through suitable procedures explained in detail. In this thesis a new non-invasive empirical method for compact electrothermal modeling and thermal resistance extraction is also described. The new contribution of the proposed approach concerns the non linear dependence of the channel temperature on the dissipated power. This is very important for GaN devices since they are capable of operating at relatively high temperatures with high power densities and the dependence of the thermal resistance on the temperature is quite relevant. Finally a novel method for the device thermal simulation is investigated: based on the analytical solution of the tree-dimensional heat equation, a Visual Basic program has been developed to estimate, in real time, the temperature distribution on the hottest surface of planar multilayer structures. The developed solver is particularly useful for peak temperature estimation at the design stage when critical decisions about circuit design and packaging have to be made. It facilitates the layout optimization and reliability improvement, allowing the correct choice of the device geometry and configuration to achieve the best possible thermal performance.
Resumo:
Percutaneous nephrolithotomy (PCNL) for the treatment of renal stones and other related renal diseases has proved its efficacy and has stood the test of time compared with open surgical methods and extracorporal shock wave lithotripsy. However, access to the collecting system of the kidney is not easy because the available intra-operative image modalities only provide a two dimensional view of the surgical scenario. With this lack of visual information, several punctures are often necessary which, increases the risk of renal bleeding, splanchnic, vascular or pulmonary injury, or damage to the collecting system which sometimes makes the continuation of the procedure impossible. In order to address this problem, this paper proposes a workflow for introduction of a stereotactic needle guidance system for PCNL procedures. An analysis of the imposed clinical requirements, and a instrument guidance approach to provide the physician with a more intuitive planning and visual guidance to access the collecting system of the kidney are presented.
Resumo:
The processing of orientations is at the core of our visual experience. Orientation selectivity in human visual cortex has been inferred from psychophysical experiments and more recently demonstrated with functional magnetic resonance imaging (fMRI). One method to identify orientation-selective responses is fMRI adaptation, in which two stimuli—either with the same or with different orientations—are presented successively. A region containing orientation-selective neurons should demonstrate an adapted response to the “same orientation” condition in contrast to the “different orientation” condition. So far, human primary visual cortex (V1) showed orientation-selective fMRI adaptation only in experimental designs using prolonged pre-adaptation periods (∼40 s) in combination with top-up stimuli that are thought to maintain the adapted level. This finding has led to the notion that orientation-selective short-term adaptation in V1 (but not V2 or V3) cannot be demonstrated using fMRI. The present study aimed at re-evaluating this question by testing three differently timed adaptation designs. With the use of a more sensitive analysis technique, we show robust orientation-selective fMRI adaptation in V1 evoked by a short-term adaptation design.
Resumo:
We performed a Rey visual design learning test (RVDLT) in 17 subjects and measured intervoxel coherence (IC) by DTI as an indication of connectivity to investigate if visual memory performance would depend on white matter structure in healthy persons. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index. Voxel-based t-test analysis of the IC values was used to identify neighboring voxel clusters with significant differences between 7 low and 10 high test performers. We detected 9 circumscribed significant clusters (p< .01) with lower IC values in low performers than in high performers, with centers of gravity located in left and right superior temporal region, corpus callosum, left superior longitudinal fascicle, and left optic radiation. Using non-parametric correlation analysis, IC and memory performance were significantly correlated in each of the 9 clusters (r< .61 to r< .81; df=15, p< .01 to p< .0001). The findings provide in vivo evidence for the contribution of white matter structure to visual memory in healthy people.
Resumo:
From Bush’s September 20, 2001 “War on Terror” speech to Congress to President-Elect Barack Obama’s acceptance speech on November 4, 2008, the U.S. Army produced visual recruitment material that addressed the concerns of falling enlistment numbers—due to the prolonged and difficult war in Iraq—with quickly-evolving and compelling rhetorical appeals: from the introduction of an “Army of One” (2001) to “Army Strong” (2006); from messages focused on education and individual identity to high-energy adventure and simulated combat scenarios, distributed through everything from printed posters and music videos to first-person tactical-shooter video games. These highly polished, professional visual appeals introduced to the American public during a time of an unpopular war fought by volunteers provide rich subject matter for research and analysis. This dissertation takes a multidisciplinary approach to the visual media utilized as part of the Army’s recruitment efforts during the War on Terror, focusing on American myths—as defined by Barthes—and how these myths are both revealed and reinforced through design across media platforms. Placing each selection in its historical context, this dissertation analyzes how printed materials changed as the War on Terror continued. It examines the television ad that introduced “Army Strong” to the American public, considering how the combination of moving image, text, and music structure the message and the way we receive it. This dissertation also analyzes the video game America’s Army, focusing on how the interaction of the human player and the computer-generated player combine to enhance the persuasive qualities of the recruitment message. Each chapter discusses how the design of the particular medium facilitates engagement/interactivity of the viewer. The conclusion considers what recruitment material produced during this time period suggests about the persuasive strategies of different media and how they create distinct relationships with their spectators. It also addresses how theoretical frameworks and critical concepts used by a variety of disciplines can be combined to analyze recruitment media utilizing a Selber inspired three literacy framework (functional, critical, rhetorical) and how this framework can contribute to the multimodal classroom by allowing instructors and students to do a comparative analysis of multiple forms of visual media with similar content.
Resumo:
The aging population has become a burning issue for all modern societies around the world recently. There are two important issues existing now to be solved. One is how to continuously monitor the movements of those people having suffered a stroke in natural living environment for providing more valuable feedback to guide clinical interventions. The other one is how to guide those old people effectively when they are at home or inside other buildings and to make their life easier and convenient. Therefore, human motion tracking and navigation have been active research fields with the increasing number of elderly people. However, motion capture has been extremely challenging to go beyond laboratory environments and obtain accurate measurements of human physical activity especially in free-living environments, and navigation in free-living environments also poses some problems such as the denied GPS signal and the moving objects commonly presented in free-living environments. This thesis seeks to develop new technologies to enable accurate motion tracking and positioning in free-living environments. This thesis comprises three specific goals using our developed IMU board and the camera from the imaging source company: (1) to develop a robust and real-time orientation algorithm using only the measurements from IMU; (2) to develop a robust distance estimation in static free-living environments to estimate people’s position and navigate people in static free-living environments and simultaneously the scale ambiguity problem, usually appearing in the monocular camera tracking, is solved by integrating the data from the visual and inertial sensors; (3) in case of moving objects viewed by the camera existing in free-living environments, to firstly design a robust scene segmentation algorithm and then respectively estimate the motion of the vIMU system and moving objects. To achieve real-time orientation tracking, an Adaptive-Gain Orientation Filter (AGOF) is proposed in this thesis based on the basic theory of deterministic approach and frequency-based approach using only measurements from the newly developed MARG (Magnet, Angular Rate, and Gravity) sensors. To further obtain robust positioning, an adaptive frame-rate vision-aided IMU system is proposed to develop and implement fast vIMU ego-motion estimation algorithms, where the orientation is estimated in real time from MARG sensors in the first step and then used to estimate the position based on the data from visual and inertial sensors. In case of the moving objects viewed by the camera existing in free-living environments, a robust scene segmentation algorithm is firstly proposed to obtain position estimation and simultaneously the 3D motion of moving objects. Finally, corresponding simulations and experiments have been carried out.
Resumo:
Based on the Attentional Control Theory (ACT; Eysenck et al., 2007), performance efficiency is decreased in high-anxiety situations because worrying thoughts compete for attentional resources. A repeated-measures design (high/low state anxiety and high/low perceptual task demands) was used to test ACT explanations. Complex football situations were displayed to expert and non-expert football players in a decision making task in a controlled laboratory setting. Ratings of state anxiety and pupil diameter measures were used to check anxiety manipulations. Dependent variables were verbal response time and accuracy, mental effort ratings and visual search behavior (e.g., visual search rate). Results confirmed that an anxiety increase, indicated by higher state-anxiety ratings and larger pupil diameters, reduced processing efficiency for both groups (higher response times and mental effort ratings). Moreover, high task demands reduced the ability to shift attention between different locations for the expert group in the high anxiety condition only. Since particularly experts, who were expected to use more top-down strategies to guide visual attention under high perceptual task demands, showed less attentional shifts in the high compared to the low anxiety condition, as predicted by ACT, anxiety seems to impair the shifting function by interrupting the balance between top-down and bottom-up processes.
Resumo:
Humans possess a highly developed sensitivity for facial features. This sensitivity is also deployed to non-human beings and inanimate objects such as cars. In the present study we aimed to investigate whether car design has a bearing on the behaviour of pedestrians. Methods: An immersive virtual reality environment with a zebra crossing was used to determine a) whether the minimum accepted distance for crossing the street is bigger for cars with dominant appearance than for cars with friendly appearance (Block 1) and b) whether the speed of dominant cars are overestimated compared to friendly cars (Block 2). In Block 1, the participant's task was to cross the road in front of an approaching car at the latest moment. The point of time when entering and leaving the street was measured. In Block 2 they were asked to estimate the speed of each passing car. An independent sample rated dominant cars as being more dominant, angry and hostile than friendly cars. Results: None of the predictions regarding the car design was confirmed. Instead, there was an effect of starting position: From the centre island, participants entered the road significantly later (smaller accepted distance) and left the road later than when starting from the pavement. Consistently, the speed of the cars was estimated significantly lower when standing on the centre island compared to the pavement. When entering the visual size of the cars as factor (instead of dominance), we found that participants started to cross the road significantly later in front of small cars compared to big cars and that the speed of smaller cars was overestimated compared to big cars (size-speed bias). Conclusions: Car size and starting position, not car design seem to have an influence on road crossing behaviour.
Resumo:
Purpose To investigate the effect of topical glucose on visual parameters in individuals with primary open-angle glaucoma (POAG). Design Double-blind, randomized, crossover study. Participants Nondiabetic pseudophakic patients with definite POAG were recruited; 29 eyes of 16 individuals participated in study 1. A follow-up study (study 2) included 14 eyes of 7 individuals. Intervention Eyes were randomly allocated to receive 50% glucose or saline eye drops every 5 minutes for 60 minutes. Main Outcome Measures The contrast sensitivity and best-corrected logarithm of the minimum angle of resolution (logMAR). Results The 50% glucose reached the vitreous in pseudophakic but not phakic individuals. Glucose significantly improved the mean contrast sensitivity at 12 cycles/degree compared with 0.9% saline by 0.26 log units (95% confidence interval [CI], 0.13–0.38; P < 0.001) and 0.40 log units (95% CI, 0.17–0.60; P < 0.001) in the follow-up study. The intraocular pressure, refraction, and central corneal thickness were not affected by glucose; age was not a significant predictor of the response. Conclusions Topical glucose temporarily improves psychophysical visual parameters in some individuals with POAG, suggesting that neuronal energy substrate delivery to the vitreous reservoir may recover function of “sick” retinal neurons.