964 resultados para Dental stress analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: The objective of the present study was to evaluate a prefabricated intraradicular threaded pure titanium post, designed and developed at the Sao Jose dos Campos School of Dentistry - UNESP, Brazil. This new post was designed to minimize stresses observed with prefabricated post systems and to improve cost-benefits. Materials and and methods: Fracture resistance testing of the post/core/root complex, fracture analysis by microscopy and stress analysis by the finite element method were used for post evaluation. The following four prefabricated metal post systems were analyzed: group 1, experimental post; group 2, modification of the experimental post; group 3, Flexi Post, and group 4, Para Post. For the analysis of fracture resistance, 40 bovine teeth were randomly assigned to the four groups (n=10) and used for the fabrication of test specimens simulating the situation in the mouth. The test specimens were subjected to compressive strength testing until fracture in an EMIC universal testing machine. After fracture of the test specimens, their roots were sectioned and analyzed by microscopy. For the finite element method, specimens of the fracture resistance test were simulated by computer modeling to determine the stress distribution pattern in the post systems studied. Results: The fracture test presented the following averages and standard deviation: G1 (45.63 +/- 8.77), G2 (49.98 +/- 7.08), G3 (43.84 +/- 5.52), G4 (47.61 +/- 7.23). Stress was homogenously distributed along the body of the intraradicular post in group 1, whereas high stress concentrations in certain regions were observed in the other groups. These stress concentrations in the body of the post induced the same stress concentration in root dentin. Conclusions: The experimental post (original and modified versions) presented similar fracture resistance and better results in the stress analysis when compared with the commercial post systems tested (08/2008PA/CEP).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A finite element analysis was carried out to study the role of prefabricated threaded split shaft post (Flexi-Post) on dentinal stress in pulpless tooth. Three dimensional plane strain model of mesio-distal section of a human maxillary central incisor without restoration was analysed with the MSC/NASTRAN (MacNeal/ Schwendler) general purpose finite analysis program was executed on a microcomputer. The model as discretized into 48.954 axisymmetric finite elements defined by 10.355 nodes. Each element was assigned unique elastic properties to represent the materials modeled. Homogeneity, isotropy and linear elasticity were assume for all material. A simulation of static load of 100N was applied to the incisal edge of the post; vertical. Maximal principal stresses and von Mises equivalent stress were calculated. Using the element analysis model employed in this study, the following can be concluded concerning threaded split shaft post (Flexi-Post): Maximum principal stresses in dentin were located at cervical place and at the post apex. The apical threads of the post not redirecting stresses away from the root.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work are presented the values found with the experimental testing, in the semi-elliptic leaf spring, utilizing 24 strain gages, distributed in five leaves of springs; these values have been compared to the calculated values found with the application of Norm SAE J788 (1982). The results showed discrepancy between the values measured and calculated and that the Norm is not indicated to determine the actuating stress in any point of any leaf of the leaf spring, but due to its simplicity and quickness of the process it presents good precision for the pre-development of the product. Copyright © 2002 Society of Automotive Engineers, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have recently shown that spatial ordering for epitaxially grown InP dots can be obtained using the periodic stress field of compositional modulation on the InGaP buffer layer. The aim of this present work is to study the growth of films of GaP by Chemical Beam Epitaxy (CBE), with in-situ monitoring by Reflection High Energy Electron Diffraction (RHEED), on layers of unstressed and stressed GaAs. Complementary, we have studied the role of a buried InP dot array on GaP nucleation in order to obtain three-dimensional structures. In both cases, the topographical characteristics of the samples were investigated by Atomic Force Microscopy (AFM) in non-contact mode. Thus vertically-coupled quantum dots of different materials have been obtained keeping the in-place spatial ordering originated from the composition modulation. © 2006 Materials Research Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optimal facial esthetics is one of the objectives in orthodontic treatment and an important issue in modern society. In this context, orthodontic treatment permits individuals with dental malpositions to achieve improved dentofacial esthetics. To reach this result, the orthodontist needs to recognize the characteristics considered normal and pleasant in dental arches and smiles. The objective of this article is to review and discuss criterion adopted by dental literature to technically analyze the smile, such as dental midline, smile line, dental exposure, negative space, dental proportion, and symmetry. This article proposes a way to visualize an ideal smile for each patient.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents results from stress cracking (SC) tests performed in both fresh and exposed high density polyethylene (HDPE) geomembranes (GM). The HDPE GMs were exposed to ultraviolet radiation, thermal aging (air oven) and tested for chemical compatibility with sodium hydroxide. Stress cracking tests in both fresh and degraded samples were performed in accordance to ASTM D5397: Notched Constant Tensile Load Test (NCTL) and Single Point-Notched Constant Tensile Load Test (SP-NCTL). The results of the NCTL showed that the geomembrane degradation process can be considered to be a catalyst for the phenomenon of SC because it caused a 50% to 60% reduction in stress crack resistance. The most resistance reduction was observed for the sample under chemical compatibility with sodium hydroxide. For the SP-NCTL, the results showed that the samples maintain the same trend verified in the NCTL. The largest resistance reduction was evidenced in samples undergoing ultraviolet degradation. © 2012 ejge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To investigate the influence of the convergence angle of tooth preparation on the fracture load of Y-TZP-based ceramic (YZ-Vita YZ) substructure (SB) veneered with a feldspathic porcelain (VM9-Vita VM9). Methods: Finite element stress analysis (FEA) was performed to examine the stress distribution of the system. Eighty YZ SB were fabricated using a CAD-CAM system and divided into four groups (n = 20), according to the total occlusal convergence (TOC) angle: G6-6° TOC; G12-12° TOC; G20-20° TOC; and G20MOD-20° TOC with modified SB. All SB were veneered with VM9, cemented in a fiber reinforced epoxy resin die, and loaded to failure. Half of the specimens from each group (n = 10) were cyclic fatigued (106 cycles) before testing. Failure analysis was performed to determine the fracture origin. Data were statistically analyzed using Anova and Tukey's tests (α = 0.05). Results: The greatest mean load to fracture value was found for the G20MOD, which was predicted by the FEA. Cyclic fatigue did not significantly affect the load of fracture. Catastrophic failure originating from the internal occlusal surface of the SB was the predominant failure mode, except for G20MOD. Significance: The YZ-VM9 restorations resisted greater compression load than the usual physiological occlusal load, regardless of the TOC angle of preparations. Yet, the G20MOD design produced the best performance among the experimental conditions evaluated. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents three different numerical models for the evaluation of the stresses in corrugated sheets under bending. Regarding the numerical simulations different approaches can be considered, i.e., a elastic linear analysis or a physical nonlinear analysis, that considers criteria to fail for the sheet material. Moreover, the construction of the finite element mesh can be used shell elements or solid elements. The choice of each finite element must be made from the consideration of their representativity before behavior to be simulated. Thus, the numerical modelling in this manuscript was performed from the three-dimensional models using the SAP2000Nonlinear software, version 7.42, which has as base the finite elements method (FEM). It was considered shell elements in the build the mesh of finite elements and an analysis of type elastic linear in this case. Five mm thick sheets were evaluated considering three different longitudinal dimensions (spans), i.e., 1100 mm, 1530 mm and 1830 mm. The applied load to the models was 2500 N/m and it was verified that the spans of support of sheets have a significant influence on the results of stresses. The sheets with larger spans present larger stresses for the same applied load. The most intense values of tension occur in the troughs (low waves) of the sheets, on the lower surface, while the most intense values of compression occur in the crests (high waves), on the upper surface of the sheet. The flanks, which are the parts among the troughs and crests of the sheets, are submitted to low levels of stresses. The numeric results of the stresses showed a good agreement with the results obtained from other researchers(3) and these results can be used to predict the behavior of corrugated sheets under bending.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, a non-linear Boundary Element Method (BEM) formulation with damage model is extended for numerical simulation of structural masonry walls in 2D stress analysis. The formulation is reoriented to analyse structural masonry, the component materials of which, clay bricks and mortar, are considered as damaged materials. Also considered are the internal variables and cell discretization of the domain. A damage model is used to represent the material behaviour and the domain discretization is also proposed and discussed. The paper presents the numerical parameters of the damage model for the material properties of the masonry components, clay bricks and mortar. Some examples are shown to validate the formulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deflection of conventional and newly introduced nondeflecting dental local anesthetic needles were compared in vitro by radiographic examination of the course of the needles in a hydrocolloid impression material. Results indicated significantly less deflection of the new needles when compared to a variety of conventional needles. Controlled clinical trials will be required to test the significance of this finding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purlin-sheeting system has been the subject of numerous theoretical and experimental investigations over the past 30 years, but the complexity of the problem has led to great difficulty in developing a sound and general model. The primary aim of the thesis is to investigate the failure behaviours of cold-formed zed and channel sections for use in purlin-sheeting systems. Both the energy method and finite strip method are used to develop an approach to investigate cold-formed zed and channel section beams with partial-lateral restraint from the metal sheeting when subjected to a uniformly distributed transverse load. The stress analysis of cold-formed zed and channel section beams with partially-lateral restraint from the metal sheeting when subjected to a uniformly distributed transverse load is investigated firstly by using the analytical model based on the energy method in which the restraint actions of the sheeting are modelled by using two springs representing the translational and rotational restraints. The numerical results have showed that the two springs have significantly different influences on the stresses of the beams. The influence of the two springs has also been found to depend on the anti-sag bar and the position of the loading line. A novel method is presented for analysing the elastic local buckling behaviour of cold-formed zed and channel section beams with partial-lateral restraint from metal sheeting when subjected to a uniformly distributed transverse load, which is carried out by inputting the cross sectional stresses with the largest compressive stress into the finite strip analysis. By using the presented novel method, individual influences of warning stress, partially lateral restraints from the sheeting and the dimensions of the cross section and position of the loading line on the buckling behaviour are investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the study is to identify the 3D behaviour of an adhesive in an assembly, and to take into account the effect of ageing in a marine environment. To that end, three different tests were employed. Gravimetric analyses were used to determine the water diffusion kinetics in the adhesive. Bulk tensile tests were performed to highlight the effects of humid ageing on the adhesive behaviour. Modified Arcan tests were performed for several ageing times to obtain the experimental database which was necessary to identify constitutive models. A Mahnken-Schlimmer type model was determined for the unaged state according to a procedure developed in a previous study. This identification used inverse techniques. It was based on the unaged modified Arcan results and on a coupling between an optimisation routine and finite-element analysis. Then, a global inverse identification procedure was developed. Its aim was to relate the unaged parameters to the moisture concentration and overcome the difficulties usually associated with ageing of bonded assemblies in a humid environment: a non-uniformity of the stress state and a gradient of mechanical properties in the adhesive. This procedure was similar to the one used in the first part but needed modified Arcan results for several ageing times. It also required an initial assumption for the evolution of the Mahnken-Schlimmer parameters with the moisture concentration.