949 resultados para Decay constants
Resumo:
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants. © 2010 Springer Science+Business Media B.V.
Resumo:
Model tests for global design verification of deepwater floating structures cannot be made at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation techniques. In such a method the upper sections of each line are modelled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model, that aims to simulate the remainder of the line. The rationale for this is that in deep water the transverse elastic waves of a line are likely to decay before they are reflected at the seabed. The focus of this paper is the verification of this rationale and the ongoing work, which is considering ways to produce a truncation model. Transverse dynamics of a mooring line are modelled using the equations of motion of an inextensible taut string, submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. Nonlinear hydrodynamic damping is included; bending and VIV effects are neglected. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it is very useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. Initial efforts in developing a truncated model show that a linearized numerical solution in the frequency domain matches very closely the exact benchmark. Copyright © 2011 by ASME.
Resumo:
We consider unforced, statistically-axisymmetric turbulence evolving in the presence of a background rotation, an imposed stratification, or a uniform magnetic field. We focus on two canonical cases: Saffman turbulence, in which E(κ → 0) ∼ κ 2, and Batchelor turbulence, in which E(κ → 0) ∼ κ 4. It has recently been shown that, provided the large scales evolve in a self-similar manner, then u ⊥ 2ℓ ⊥ 2ℓ // = constant in Saffman turbulence and u ⊥ 2ℓ ⊥ 4ℓ // = constant in Batchelor turbulence (Davidson, 2009, 2010). Here the subscripts ⊥ and // indicate directions perpendicular and parallel to the axis of symmetry, and ℓ ⊥, ℓ //, and u ⊥ are suitably defined integral scales. These constraints on the integral scales allow us to make simple, testable predictions for the temporal evolution of ℓ ⊥, ℓ //, and u ⊥ in rotating, stratified and MHD turbulence.
Resumo:
High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments. © 2005 IOP Publishing Ltd.
Resumo:
Carbon coatings of thickness down to 2 nanometers are needed to increase the storage density in magnetic hard disks and reach the 100 Gbit/in2 target. Methods to measure the properties of these ultrathin hard films still have to be developed. We show that combining Surface Brillouin Scattering (SBS) andX-ray reflectivity measurements the elastic constants of such films are accessible. Tetrahedral amorphous carbofilms of thickness down to about 2 nm were deposited on Si by an S bend filtered cathodic vacuum arc, achieving a continuous coverage on large areas free of macroparticles. Film thickness and mass density are measured by X-ray reflectivity: densities above 3 g/cm3 are found, indicating a significant sp3 content. The dispersion relations of surface acoustic waves are measured by SBS. We show that for thicknesses above ∼4 nm these waves can be described by a continuum elastic model based on a single homogeneous equivalent film. The elastic constants can then be obtained by fitting the dispersion relations, computed for given film properties, to the measured dispersion relations. For thicknesses of 3 nm or less qualitative differences among films are well measurable, but quantitative results are less reliable. We have thus shown that we can grow and characterise nanometer size tetrahedral amorphous carbon film, which maintain their high density and peculiar mechanical properties down to around 4 nm thickness, satisfying the requirements set for the hard disk coating material.
Resumo:
In order to understand why emissions of Particulate Matter (PM) from Spark-Ignition (SI) automobiles peak during periods of transient operation such as rapid accelerations, a study of controlled, repeatable transients was performed. Time-resolved engine-out PM emissions from a modern four-cylinder engine during transient load and air/fuel ratio operation were examined, and the results could be fit in most cases to a first order time response. The time constants for the transient response are similar to those measured for changes in intake valve temperature, reflecting the strong dependence of PM emissions on the amount of liquid fuel in the combustion chamber. In only one unrepeatable case did the time response differ from a first order function: showing an overshoot in PM emissions during transition from the initial to the final steady state PM emission level. PM emissions during controlled, motored start-up experiments show a peak at start-up followed by a period during which emissions are either relatively constant or drift somewhat. When the fuel injection and ignition are shut off, PM emissions also peak briefly, but rapidly decay to low levels. Qualitative implications on the study and modeling of PM emissions during transient engine operation are discussed. Copyright © 1999 Society of Automotive Engineers, Inc.
Resumo:
In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both object manipulation and force-field adaptation, contrary to previous models, memory decay is highly context dependent. We show that the decay of memory associated with a given context is greatest for movements made in that context, with more distant contexts showing markedly reduced decay. Thus, both memory formation and decay are strongest for the current context. We propose that this apparently paradoxical organization provides a mechanism for optimizing performance. While memory decay tends to reduce force output, memory formation can correct for any errors that arise, allowing the motor system to regulate force output so as to both minimize errors and avoid unnecessary energy expenditure. The motor commands for any given context thus result from a balance between memory formation and decay, while memories for other contexts are preserved.