893 resultados para DSP - Digital signal processor
Resumo:
Defibrillator is a 16’41” musical work for solo performer, laptop computer and electric guitar. The electric guitar is processed in real-time by digital signal processing network in software, with gestural control provided by a foot-operated pedal board. --------- The work is informed by a range of ideas from the genres of electroacoustic music, western art music, popular music and cinematic sound. It seeks to fluidly cross and hybridise musical practices from these diverse sonic traditions and to develop a compositional language that draws upon multiple genres, but at the same time resists the ability to be located within a singular genre. Musical structures and sonic markers which form genre are ruptured at strategic levels of the musical structure in order to allow for a cross flow of concepts between genres. The process of rupture is facilitated by the practical implementation of music and sound reception theories into the compositional process. -------- The piece exhibits the by-products of a composer born into a media saturated environment, drawing on a range of musical and sonic traditions, actively seeking to explore the liminal space in between these traditions. The project stems from the author's research interests in locating points of connection between traditions of experimentation in diverse musical and sonic traditions arising from the broad uptake of media technologies in the early 20th century.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.
Resumo:
In the field of rolling element bearing diagnostics envelope analysis, and in particular the squared envelope spectrum, have gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of squared envelope spectrum has been extended to cases in which small speed fluctuations occur, maintaining the effectiveness and efficiency that characterize this successful technique. However, the constraint on speed has to be removed completely, making envelope analysis suitable also for speed and load transients, to implement an algorithm valid for all the industrial application. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This paper is aimed at providing and testing a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.
Resumo:
Diagnostics of rolling element bearings have been traditionally developed for constant operating conditions, and sophisticated techniques, like Spectral Kurtosis or Envelope Analysis, have proven their effectiveness by means of experimental tests, mainly conducted in small-scale laboratory test-rigs. Algorithms have been developed for the digital signal processing of data collected at constant speed and bearing load, with a few exceptions, allowing only small fluctuations of these quantities. Owing to the spreading of condition based maintenance in many industrial fields, in the last years a need for more flexible algorithms emerged, asking for compatibility with highly variable operating conditions, such as acceleration/deceleration transients. This paper analyzes the problems related with significant speed and load variability, discussing in detail the effect that they have on bearing damage symptoms, and propose solutions to adapt existing algorithms to cope with this new challenge. In particular, the paper will i) discuss the implication of variable speed on the applicability of diagnostic techniques, ii) address quantitatively the effects of load on the characteristic frequencies of damaged bearings and iii) finally present a new approach for bearing diagnostics in variable conditions, based on envelope analysis. The research is based on experimental data obtained by using artificially damaged bearings installed on a full scale test-rig, equipped with actual train traction system and reproducing the operation on a real track, including all the environmental noise, owing to track irregularity and electrical disturbances of such a harsh application.
Resumo:
In the field of rolling element bearing diagnostics, envelope analysis has gained in the last years a leading role among the different digital signal processing techniques. The original constraint of constant operating speed has been relaxed thanks to the combination of this technique with the computed order tracking, able to resample signals at constant angular increments. In this way, the field of application of this technique has been extended to cases in which small speed fluctuations occur, maintaining high effectiveness and efficiency. In order to make this algorithm suitable to all industrial applications, the constraint on speed has to be removed completely. In fact, in many applications, the coincidence of high bearing loads, and therefore high diagnostic capability, with acceleration-deceleration phases represents a further incentive in this direction. This chapter presents a procedure for the application of envelope analysis to speed transients. The effect of load variation on the proposed technique will be also qualitatively addressed.
Resumo:
For the renewable energy sources whose outputs vary continuously, a Z-source current-type inverter has been proposed as a possible buck-boost alternative for grid-interfacing. With a unique X-shaped LC network connected between its dc power source and inverter topology, Z-source current-type inverter is however expected to suffer from compounded resonant complications in addition to those associated with its second-order output filter. To improve its damping performance, this paper proposes the careful integration of Posicast or three-step compensators before the inverter pulse-width modulator for damping triggered resonant oscillations. In total, two compensators are needed for wave-shaping the inverter boost factor and modulation ratio, and they can conveniently be implemented using first-in first-out stacks and embedded timers of modern digital signal processors widely used in motion control applications. Both techniques are found to damp resonance of ac filter well, but for cases of transiting from current-buck to boost state, three-step technique is less effective due to the sudden intermediate discharging interval introduced by its non-monotonic stepping (unlike the monotonic stepping of Posicast damping). These findings have been confirmed both in simulations and experiments using an implemented laboratory prototype.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating noncritical in-car systems. Under such conditions, however, speech recognition accuracy degrades significantly, and techniques such as speech enhancement are required to improve these accuracies. Likelihood-maximizing (LIMA) frameworks optimize speech enhancement algorithms based on recognized state sequences rather than traditional signal-level criteria such as maximizing signal-to-noise ratio. LIMA frameworks typically require calibration utterances to generate optimized enhancement parameters that are used for all subsequent utterances. Under such a scheme, suboptimal recognition performance occurs in noise conditions that are significantly different from that present during the calibration session – a serious problem in rapidly changing noise environments out on the open road. In this chapter, we propose a dialog-based design that allows regular optimization iterations in order to track the ever-changing noise conditions. Experiments using Mel-filterbank noise subtraction (MFNS) are performed to determine the optimization requirements for vehicular environments and show that minimal optimization is required to improve speech recognition, avoid over-optimization, and ultimately assist with semireal-time operation. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session only.
Resumo:
We address the issue of complexity for vector quantization (VQ) of wide-band speech LSF (line spectrum frequency) parameters. The recently proposed switched split VQ (SSVQ) method provides better rate-distortion (R/D) performance than the traditional split VQ (SVQ) method, even at the requirement of lower computational complexity. but at the expense of much higher memory. We develop the two stage SVQ (TsSVQ) method, by which we gain both the memory and computational advantages and still retain good R/D performance. The proposed TsSVQ method uses a full dimensional quantizer in its first stage for exploiting all the higher dimensional coding advantages and then, uses an SVQ method for quantizing the residual vector in the second stage so as to reduce the complexity. We also develop a transform domain residual coding method in this two stage architecture such that it further reduces the computational complexity. To design an effective residual codebook in the second stage, variance normalization of Voronoi regions is carried out which leads to the design of two new methods, referred to as normalized two stage SVQ (NTsSVQ) and normalized two stage transform domain SVQ (NTsTrSVQ). These two new methods have complimentary strengths and hence, they are combined in a switched VQ mode which leads to the further improvement in R/D performance, but retaining the low complexity requirement. We evaluate the performances of new methods for wide-band speech LSF parameter quantization and show their advantages over established SVQ and SSVQ methods.
Resumo:
In this brief, we present a new circuit technique to generate the sigmoid neuron activation function (NAF) and its derivative (DNAF). The circuit makes use of transistor asymmetry in cross-coupled differential pair to obtain the derivative. The asymmetry is introduced through external control signal, as and when required. This results in the efficient utilization of the hard-ware by realizing NAF and DNAF using the same building blocks. The operation of the circuit is presented in the subthreshold region for ultra low-power applications. The proposed circuit has been experimentally prototyped and characterized as a proof of concept on the 1.5-mum AMI technology.
Resumo:
An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.
Resumo:
The resolution of the digital signal path has a crucial impact on the design, performance and the power dissipation of the radio receiver data path, downstream from the ADC. The ADC quantization noise has been traditionally included with the Front End receiver noise in calculating the SNR as well as BER for the receiver. Using the IEEE 802.15.4 as an example, we show that this approach leads to an over-design for the ADC and the digital signal path, resulting in larger power. More accurate specifications for the front-end design can be obtained by making SNRreg a function of signal resolutions. We show that lower resolution signals provide adequate performance and quantization noise alone does not produce any bit-error. We find that a tight bandpass filter preceding the ADC can relax the resolution requirement and a 1-bit ADC degrades SNR by only 1.35 dB compared to 8-bit ADC. Signal resolution has a larger impact on the synchronization and a 1-bit ADC costs about 5 dB in SNR to maintain the same level of performance as a 8-bit ADC.
Resumo:
In this paper, we investigate the achievable rate region of Gaussian multiple access channels (MAC) with finite input alphabet and quantized output. With finite input alphabet and an unquantized receiver, the two-user Gaussian MAC rate region was studied. In most high throughput communication systems based on digital signal processing, the analog received signal is quantized using a low precision quantizer. In this paper, we first derive the expressions for the achievable rate region of a two-user Gaussian MAC with finite input alphabet and quantized output. We show that, with finite input alphabet, the achievable rate region with the commonly used uniform receiver quantizer has a significant loss in the rate region compared. It is observed that this degradation is due to the fact that the received analog signal is densely distributed around the origin, and is therefore not efficiently quantized with a uniform quantizer which has equally spaced quantization intervals. It is also observed that the density of the received analog signal around the origin increases with increasing number of users. Hence, the loss in the achievable rate region due to uniform receiver quantization is expected to increase with increasing number of users. We, therefore, propose a novel non-uniform quantizer with finely spaced quantization intervals near the origin. For a two-user Gaussian MAC with a given finite input alphabet and low precision receiver quantization, we show that the proposed non-uniform quantizer has a significantly larger rate region compared to what is achieved with a uniform quantizer.