973 resultados para DNS Reparatur Doppelstrangbruch Toxikologie Histon Chromatin
Resumo:
A body with a shape similar to a hot wire with its sheath, but no prongs, has been placed close to the wall of a turbulent channel at Re_tau = 600. The results of the channel flow, without the wire, agree with previous published ones, despite the modest resolution and domain size. A simplified, two-dimensional version of the wire at the same Reynolds number has been studied to compare the dynamic response of cold and hot wires, where a slightly bigger perturbation is seen in the hot case, but an almost identical dynamic response. The cold wire seems to be able to measure instantaneous velocity with total drag after proper calibration. Being a DNS, the complete description of the flow field around the wire is obtained.
Resumo:
El DNS (Domain Name System) es un sistema que permite localizar equipos y servicios de Internet a través de nombres descriptivos organizados de forma jerárquica gracias a un mecanismo de consulta/respuesta. Cuando un usuario escriba un nombre de dominio en una aplicación, los servidores DNS podrán traducirlo a otra información asociada con él mismo, como una dirección IP o un alias, por lo que el DNS puede entenderse como una base de datos globalmente jerarquizada que nació a causa de la necesidad de poder recordar fácilmente los nombres de todos los servidores conectados a Internet. La necesidad del uso del DNS y su carencia en sistemas de seguridad, han conformado un entorno propicio para multitud de ataques, entre los que se encuentran el MITM (Man In The Middle), caché poisoning, negación de servicios o fugas de información entre otros, generando situaciones comprometidas para multitud de usuarios. Para poder contrarrestarlos se han ido implementando un conjunto de modelos de seguridad, entre los que destacan algunos como el DNSSEC, con su uso de firmas criptográficas , el WSEC DNS con identificadores aleatorios o el DNS Curve que cifraba todo el contenido transmitido. Este proyecto consta de una breve introducción al DNS, donde se podrá conocer su estructura y entender su funcionamiento. Posteriormente se pasará a analizar conceptos de seguridad web, particularizándose en un examen exhaustivo de las vulnerabilidades en el DNS. Finalmente se estudiarán distintos modelos de seguridad que se han ido implementando a lo largo del tiempo para intentar solventar estos problemas junto con sus ventajas y desventajas.
Resumo:
Extensive studies of the β-phaseolin (phas) gene in transgenic tobacco have shown that it is highly active during seed embryogenesis but is completely silent in leaf and other vegetative tissues. In vivo footprinting revealed that the lack of even basal transcriptional activity in vegetative tissues is associated with the presence of a nucleosome that is rotationally positioned with base pair precision over three phased TATA boxes present in the phas promoter. Positioning is sequence-dependent because an identical rotational setting is obtained upon nucleosome reconstitution in vitro. A comparison of DNase I and dimethyl sulfate footprints in vivo and in vitro strongly suggests that this repressive chromatin architecture is remodeled concomitant with gene activation in the developing seed. This leads to the disruption of histone-mediated DNA wrapping and the assembly of the TATA boxes into a transcriptionally competent nucleoprotein complex.
Resumo:
The PML/SP100 nuclear bodies (NBs) were first described as discrete subnuclear structures containing the SP100 protein. Subsequently, they were shown to contain the PML protein which is part of the oncogenic PML-RARα hybrid produced by the t(15;17) chromosomal translocation characteristic of acute promyelocytic leukemia. Yet, the physiological role of these nuclear bodies remains unknown. Here, we show that SP100 binds to members of the heterochromatin protein 1 (HP1) families of non-histone chromosomal proteins. Further, we demonstrate that a naturally occurring splice variant of SP100, here called SP100-HMG, is a member of the high mobility group-1 (HMG-1) protein family and may thus possess DNA-binding potential. Both HP1 and SP100-HMG concentrate in the PML/SP100 NBs, and overexpression of SP100 leads to enhanced accumulation of endogenous HP1 in these structures. When bound to a promoter, SP100, SP100-HMG and HP1 behave as transcriptional repressors in transfected mammalian cells. These observations present molecular evidence for an association between the PML/SP100 NBs and the chromatin nuclear compartment. They support a model in which the NBs may play a role in certain aspects of chromatin dynamics.
Resumo:
The Drosophila HMG1-like protein DSP1 was identified by its ability to inhibit the transcriptional activating function of Dorsal in a promoter-specific fashion in yeast. We show here that DSP1 as well as its mammalian homolog hHMG2 bind to the mammalian protein SP100B and that SP100B in turn binds to human homologs of HP1. The latter is a Drosophila protein that is involved in transcriptional silencing. Each of these proteins represses transcription when tethered to DNA in mammalian cells. These results suggest how heterochromatin proteins might be recruited to specific sites on DNA with resultant specific effects on gene expression.
Resumo:
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric nuclease complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we generated DFF45 mutant mice. DNA fragmentation activity is completely abolished in cell extracts from DFF45 mutant tissues. In response to apoptotic stimuli, splenocytes, thymocytes, and granulocytes from DFF45 mutant mice are resistant to DNA fragmentation, and splenocytes and thymocytes are also resistant to chromatin condensation. Nevertheless, development of the immune system in the DFF45 mutant mice is normal. These results demonstrate that DFF45 is critical for the induction of DNA fragmentation and chromatin condensation in vivo, but is not required for normal immune system development.
Targeting a SWI/SNF-related chromatin remodeling complex to the β-globin promoter in erythroid cells
Resumo:
Chromatin remodeling complexes such as the SWI/SNF complex make DNA accessible to transcription factors by disrupting nucleosomes. However, it is not known how such complexes are targeted to the promoter. For example, a SWI/SNF1-like chromatin remodeling complex erythroid Krüppel-like factor (EKLF) coactivator-remodeling complex 1 (E-RC1) disrupts the nucleosomes over the human β-globin promoter in an EKLF-dependent manner. However, it is not known whether E-RC1 is targeted specifically to the β-globin promoter or whether E-RC1 is randomly targeted, but its activity is evident only at the β-globin promoter. Because E-RC1 cannot remodel chromatin over the β-globin promoter without EKLF in vitro, it has been proposed that SWI/SNF1-like complexes such as E-RC1 are targeted specifically to the promoter by selectively interacting with promoter-associated transcription factors such as EKLF. In this report, we test this hypothesis in the cellular context by using the ProteIN POsition Identification with Nuclease Tail (PIN*POINT) assay. We find that the Brahma-related gene (BRG) 1 and BRG1-associated factor (BAF) 170 subunits of E-RC1 are both recruited near the transcription initiation site of the β-globin promoter. On transiently transfected templates, both the locus control region and the EKLF-binding site are important for their recruitment to the β-globin promoter in mouse erythroleukemia cells. When the β-globin promoter was linked to the cytomegalovirus enhancer, the E-RC1 complex was not recruited, suggesting that recruitment of the E-RC1 complex is not a general property of enhancers.
Resumo:
A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.
Resumo:
We thank Karim Gharbi and Urmi Trivedi for their assistance with RNA sequencing, carried out in the GenePool genomics facility (University of Edinburgh). We also thank Susan Fairley and Eduardo De Paiva Alves (Centre for Genome Enabled Biology and Medicine, University of Aberdeen) for help with the initial bioinformatics analysis. We thank Aaron Mitchell for kindly providing the ALS3 mutant, Julian Naglik for the gift of TR146 cells, and Jon Richardson for technical assistance. We thank the Genomics and Bioinformatics core of the Faculty of Health Sciences for Next Generation Sequencing and Bioinformatics support, the Information and Communication Technology Office at the University of Macau for providing access to a High Performance Computer and Jacky Chan and William Pang for their expert support on the High Performance Computer. Finally, we thank Amanda Veri for generating CaLC2928. M.D.L. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (Wellcome Trust 096072), R.A.F. by a Wellcome Trust-Massachusetts Institute of Technology (MIT) Postdoctoral Fellowship, L.E.C. by a Canada Research Chair in Microbial Genomics and Infectious Disease and by Canadian Institutes of Health Research Grants MOP-119520 and MOP-86452, A.J. P.B. was supported by the UK Biotechnology and Biological Sciences Research Council (BB/F00513X/1) and by the European Research Council (ERC-2009-AdG-249793-STRIFE), KHW is supported by the Science and Technology Development Fund of Macau S.A.R (FDCT) (085/2014/A2) and the Research and Development Administrative Office of the University of Macau (SRG2014-00003-FHS) and R.T.W. by the Burroughs Wellcome fund and NIH R15AO094406. Data availability RNA-sequencing data sets are available at ArrayExpress (www.ebi.ac.uk) under accession code E-MTAB-4075. ChIP-seq data sets are available at the NCBI SRA database (http://www.ncbi.nlm.nih.gov) under accession code SRP071687. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files, or from the corresponding author upon request.
Resumo:
The HML and HMR mating loci of Saccharomyces cerevisiae are bound in silent chromatin, which is assembled at the flanking E and I transcriptional silencers. The retrotransposon Ty5 preferentially integrates into regions of silent chromatin, and Ty5 insertions near the HMR-E silencer account for ≈2% of total transposition events. Most Ty5 insertions occur within 800 bp on either side of the autonomously replicating consensus sequence within HMR-E. Ty5 target preference is determined by silent chromatin, because integration near HMR-E is abolished in strains with silencer mutations that alleviate transcriptional repression. The recognition of specific DNA sequences per se does not direct integration, rather, it is the protein complex assembled at the silencers. As demonstrated here for Ty5, recognition of specific chromatin domains may be a general mechanism by which retrotransposons and retroviruses determine integration sites.
Resumo:
Histones H3 and H4 have a well defined structural role in the nucleosome and an established role in the regulation of transcription. We have made use of a microinjection strategy using Xenopus embryos to define the minimal structural components of H3 and H4 necessary for nucleosome assembly into metazoan chromosomes in vivo. We find that both the N-terminal tail of H4, including all sites of acetylation, and the C-terminal α-helix of the H4 histone fold domain are dispensable for chromatin assembly. The N-terminal tail and an N-terminal α-helix of H3 are also dispensable for chromatin assembly. However, the remainder of the H3 and H4 histone folds are essential for incorporation of these proteins into chromatin. We suggest that elements of the histone fold domain maintain both nucleosomal integrity and have distinct functions essential for cell viability.
Resumo:
In general, the transcriptional competence of a chromatin domain is correlated with increased sensitivity to DNase I cleavage. A recent observation that actively transcribing RNA polymerase II piggybacks a histone acetyltranferase activity [Wittschieben, B., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., Li, Y., Allis, C. D., Tempst, P. & Svejstrup, J. Q. (1999) Mol. Cell 4, 123–128] implies that the state of histone acetylation, and hence the ability of chromatin to fold, can be altered by a processive mechanism. In this article, it is proposed that tracking-mediated chromatin modification could create and/or maintain an open configuration in a complete chromatin domain including both intra- and extragenic regions. This mechanism suggests a putative functional role for the extragenic transcription observed at the β-globin and other loci in vertebrate cells.
Resumo:
The life cycle of angiosperms is punctuated by a dormant phase that separates embryonic and postembryonic development of the sporophyte. In the pickle (pkl) mutant of Arabidopsis, embryonic traits are expressed after germination. The penetrance of the pkl phenotype is strongly enhanced by inhibitors of gibberellin biosynthesis. Map-based cloning of the PKL locus revealed that it encodes a CHD3 protein. CHD3 proteins have been implicated as chromatin-remodeling factors involved in repression of transcription. PKL is necessary for repression of LEC1, a gene implicated as a critical activator of embryo development. We propose that PKL is a component of a gibberellin-modulated developmental switch that functions during germination to prevent reexpression of the embryonic developmental state.
Resumo:
Cac1p is a subunit of yeast chromatin assembly factor I (yCAF-I) that is thought to assemble nucleosomes containing diacetylated histones onto newly replicated DNA [Kaufman, P. D., Kobayashi, R. & Stillman, B. (1997) Genes Dev. 11, 345–357]. Although cac1Δ cells could establish and maintain transcriptional repression at telomeres, they displayed a reduced heritability of the repressed state. Single-cell analysis revealed that individual cac1Δ cells switch from transcriptionally “off” to transcriptionally “on” more often per cell cycle than wild-type cells. In addition, cac1Δ cells were defective for transcriptional silencing near internal tracts of C1–3A sequence, but they showed no defect in silencing at the silent mating type loci when analyzed by a reverse transcription–PCR assay. Despite the loss of transcriptional silencing at telomeres and internal C1–3A tracts, subtelomeric DNA was organized into nucleosomes that had all of the features characteristic of silent chromatin, such as hypoacetylation of histone H4 and protection from methylation by the Escherichia coli dam methylase. Thus, these features of silent chromatin are not sufficient for stable maintenance of a silent chromatin state. We propose that the inheritance of the transcriptionally repressed state requires the specific pattern of histone acetylation conferred by yCAF-I-mediated nucleosome assembly.
Resumo:
The compaction level of arrays of nucleosomes may be understood in terms of the balance between the self-repulsion of DNA (principally linker DNA) and countering factors including the ionic strength and composition of the medium, the highly basic N termini of the core histones, and linker histones. However, the structural principles that come into play during the transition from a loose chain of nucleosomes to a compact 30-nm chromatin fiber have been difficult to establish, and the arrangement of nucleosomes and linker DNA in condensed chromatin fibers has never been fully resolved. Based on images of the solution conformation of native chromatin and fully defined chromatin arrays obtained by electron cryomicroscopy, we report a linker histone-dependent architectural motif beyond the level of the nucleosome core particle that takes the form of a stem-like organization of the entering and exiting linker DNA segments. DNA completes ≈1.7 turns on the histone octamer in the presence and absence of linker histone. When linker histone is present, the two linker DNA segments become juxtaposed ≈8 nm from the nucleosome center and remain apposed for 3–5 nm before diverging. We propose that this stem motif directs the arrangement of nucleosomes and linker DNA within the chromatin fiber, establishing a unique three-dimensional zigzag folding pattern that is conserved during compaction. Such an arrangement with peripherally arranged nucleosomes and internal linker DNA segments is fully consistent with observations in intact nuclei and also allows dramatic changes in compaction level to occur without a concomitant change in topology.