975 resultados para DNA virus
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
Prostaglandins (Pgs) have been shown to inhibit the replication of several DNA and RNA viruses. Here we report the effect of prostaglandin (PgA1) on the multiplication of a positive strand RNA virus, Classical Swine Fever Virus (CSFV) in PK15 cells. PgA1 was found to inhibit the multiplication of CSFV. At a concentration of 5 µg/ml, which was nontoxic to the cells, PgA1 inhibitis virus production in 99%. In PgA1 treated cells the size and number of characteristic Classical Swine Fever focus decreased in amount.
Resumo:
Rubella virus (RV) envelope glycoproteins E1 and E2 are targeted to the Golgi as heterodimers. While E2 contains a transmembrane Golgi retention signal, E1 is arrested in a pre-Golgi compartment in the absence of E2, and appears to require heterodimerization in order to reach the Golgi. Various forms of E1 with deletions in the ectodomain or lacking the cytoplasmic (CT) and transmembrane (TM) domains, as well as the 29 C-terminal amino acid residues of the ectodomain were also retained intracellularly. We therefore investigated the possibility of targetting E1 to the plasma membrane by addition of a glycosylphosphatidylinositol (GPI) anchor. We found that E1GPI was transported to the cell surface where it retained the hemadsorption activity characteristic of the wild-type E1/E2 heterodimer. Furthermore, coexpression of a mammalian GPI-specific phospholipase D (GPI-PLD) resulted in the release of E1GPI and in constitutive expression of a soluble form of E1. This study thus demonstrates that the GPI anchor has a dominant effect over the E1 pre-Golgi retention signal and that E1 is sufficient for hemadsorption.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.
Resumo:
A 36 year old male was admitted in December 1997 to hospital with afternoon fever, malaise and hepatosplenomegaly. He also had a dry cough, dyspnoea and anaemia. Pneumonia caused by Pneumocystis carinii and human immunodeficiency virus (HIV) infection were documented. The HIV infection was confirmed in 1997 with 290,000 virus copies. The patient had been in the Mexican State of Chiapas which is known to be endemic for visceral leishmaniosis (VL) and localized cutaneous leishmaniosis (LCL). The visceral symptoms were diagnosed as VL and the causal agent was identified as Leishmania (L.) mexicana. Identification of Leishmania was carried out by the analysis of amplified DNA with specific primers belonging to the Leishmania subgenus and by dot blot positive hybridisation of these polymerase chain reaction derived products with kDNA from the L. (L.) mexicana MC strain used as probe. This is the first case in Mexico of VL caused by a species of Leishmania that typically produces a cutaneous disease form.
Resumo:
The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.
Resumo:
TT virus (TTV) is a newly described nonenveloped human virus, with a circular, negative-stranded DNA genome, that was first identified in the blood of a patient with posttransfusion hepatitis of unknown etiology. PCR primers and conditions used for TTV DNA amplification may greatly influence the level of TTV detection in serum. Three PCR assays, with different regions of the genome as targets, were used to test TTV DNA in 130 sera from children and adults visiting a hospital in the south of Brazil, most of them for routine procedure. Forty-four percent of adult sera and 73% of sera from children aged 0-10 years were TTV positive with at least one PCR assay. However, the three assays were able to detect only 33%, 35%, and 70% of the total positive samples. Our results showed a high prevalence of TTV infection in the south of Brazil, particularly among young children, and confirmed the necessity of performing several PCR assays to assess the true TTV prevalence in a determined population.
Resumo:
The nuclear factor I (NFI) family consists of sequence-specific DNA-binding proteins that activate both transcription and adenovirus DNA replication. We have characterized three new members of the NFI family that belong to the Xenopus laevis NFI-X subtype and differ in their C-termini. We show that these polypeptides can activate transcription in HeLa and Drosophila Schneider line 2 cells, using an activation domain that is subdivided into adjacent variable and subtype-specific domains each having independent activation properties in chimeric proteins. Together, these two domains constitute the full NFI-X transactivation potential. In addition, we find that the X. laevis NFI-X proteins are capable of activating adenovirus DNA replication through their conserved N-terminal DNA-binding domains. Surprisingly, their in vitro DNA-binding activities are specifically inhibited by a novel repressor domain contained within the C-terminal part, while the dimerization and replication functions per se are not affected. However, inhibition of DNA-binding activity in vitro is relieved within the cell, as transcriptional activation occurs irrespective of the presence of the repressor domain. Moreover, the region comprising the repressor domain participates in transactivation. Mechanisms that may allow the relief of DNA-binding inhibition in vivo and trigger transcriptional activation are discussed.
Resumo:
Although human T-lymphotropic virus type I (HTLV-I) exhibits high genetic stability, as compared to other RNA viruses and particularly to human immunodeficiency virus (HIV), genotypic subtypes of this human retrovirus have been characterized in isolates from diverse geographical areas. These are currently believed not to be associated with different pathogenetic outcomes of infection. The present study aimed at characterizing genotypic subtypes of viral isolates from 70 HTLV-I-infected individuals from São Paulo, Brazil, including 42 asymptomatic carriers and 28 patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), using restricted fragment length polymorphism (RFLP) analysis of long terminal repeat (LTR) HTLV-I proviral DNA sequences. Peripheral blood mononuclear cell lysates were amplified by nested polymerase chain reaction (PCR) and amplicons submitted to enzymatic digestion using a panel of endonucleases. Among HTLV-I asymptomatic carriers, viral cosmopolitan subtypes A, B, C and E were identified in 73.8%, 7.1%, 7.1% and 12% of tested samples, respectively, whereas among HAM/TSP patients, cosmopolitan A (89.3%), cosmopolitan C (7.1%) and cosmopolitan E (3.6%) subtypes were detected. HTLV-I subtypes were not statistically significant associated with patients' clinical status. We also conclude that RFLP analysis is a suitable tool for descriptive studies on the molecular epidemiology of HTLV-I infections in our environment.
Resumo:
Outbreaks of gastroenteritis have occurred among consumers of raw or undercooked shellfish harvested from faecally polluted waters. A multiplex reverse transcription-polymerase chain reaction (RT-PCR) was applied for the simultaneous detection of hepatitis A virus (HAV), poliovirus (PV) and simian rotavirus (RV-SA11) and compared with specific primers for each genome sequence. Three amplified DNA products representing HAV (192 bp), PV (394 bp) and RV (278 bp) were identified when positive controls were used. However, when tested on experimentally contaminated raw oysters, this method was not able to detect the three viruses simultaneously. This is probably due to the low concentration of viral RNAs present in oyster extract which were partially lost during the extracts preparation.
Resumo:
BACKGROUND: A growing number of patients with chronic hepatitis B is being treated for extended periods with nucleoside and/or nucleotide analogs. In this context, antiviral resistance represents an increasingly common and complex issue. METHODS: Mutations in the hepatitis B virus (HBV) reverse transcriptase (rt) gene and viral genotypes were determined by direct sequencing of PCR products and alignment with reference sequences deposited in GenBank. RESULTS: Plasma samples from 60 patients with chronic hepatitis B were analyzed since March 2009. The predominant mutation pattern identified in patients with virological breakthrough was rtM204V/I ± different compensatory mutations, conferring resistance to L-nucleosides (lamivudine, telbivudine, emtricitabine) and predisposing to entecavir resistance (n = 18). Complex mutation patterns with a potential for multidrug resistance were identified in 2 patients. Selection of a fully entecavir resistant strain was observed in a patient exposed to lamivudine alone. Novel mutations were identified in 1 patient. Wild-type HBV was identified in 9 patients with suspected virological breakthrough, raising concerns about treatment adherence. No preexisting resistance mutations were identified in treatment-naïve patients (n = 13). Viral genome amplification and sequencing failed in 16 patients, of which only 2 had a documented HBV DNA > 1000 IU/ml. HBV genotypes were D in 28, A in 6, B in 4, C in 3 and E in 3 patients. Results will be updated in August 2010 and therapeutic implications discussed. CONCLUSIONS: With expanding treatment options and a growing number of patients exposed to nucleoside and/or nucleotide analogs, sequence-based HBV antiviral resistance testing is expected to become a cornerstone in the management of chronic hepatitis B.
Resumo:
Twenty-two vertically human immunodeficiency virus type 1 (HIV-1) infected Brazilian children were studied for antiretroviral drug resistance. They were separated into 2 groups according to the administration of antiretroviral therapy into those who presented disease symptoms or without symptoms and no therapy. Viral genome sequencing reactions were loaded on an automated DNA sampler (TruGene, Visible Genetics) and compared to a database of wild type HIV-1. In the former group 8 of 12 children presented isolates with mutations conferring resistance to protease inhibitors (PIs), 7 presented isolates resistant to nucleoside reverse transcriptase inhibitors (NRTIs) and 2 presented isolates resistant to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten children were included in the antiretroviral naïve group. Eight were susceptible to NRTIs and all of them were susceptible to PIs; one presented the V108I mutation, which confers low-level resistance to NNRTIs. The data report HIV mutant isolates both in treated and untreated infants. However, the frequency and the level of drug resistance were more frequent in the group receiving antiretroviral therapy, corroborating the concept of selective pressure acting on the emergence of resistant viral strains. The children who presented alterations at polymorphism sites should be monitored for the development of additional mutations occurring at relevant resistance codons.
Resumo:
During the replication cycle of vaccinia virus, four different forms of viral particles are produced. The two extracellular enveloped forms, cell-associated enveloped virus and extracellular enveloped virus, are responsible for cell-to-cell transmission and long-range spread of infection both in vivo and in vitro. Despite the biological importance of the enveloped forms, the mechanism of envelopment and the components involved in this process have been analysed only recently. Therefore the individual steps and the rate-limiting factors of the envelopment process are still unknown. The protein p37K, an unglycosylated but acylated envelope protein of molecular mass 37 kDa, has been shown to be essential for envelopment. However, this study shows that over-expression of p37K by vaccinia virus recombinants reduces rather than increases the yield of infectious enveloped virus which is mainly due to the enveloped virions exhibiting a strongly diminished specific infectivity.
Resumo:
The patterns of genetic variation of samples of Candida spp. isolated from patients infected with human immunodeficiency virus in Vitória, state of Espírito Santo, Brazil, were examined. Thirty-seven strains were isolated from different anatomical sites obtained from different infection episodes of 11 patients infected with the human immunodeficiency virus (HIV). These samples were subjected to randomly amplified polymorphic DNA (RAPD) analysis using 9 different primers. Reproducible and complex DNA banding patterns were obtained. The experiments indicated evidence of dynamic process of yeast colonization in HIV-infected patients, and also that certain primers are efficient in the identification of species of the Candida genus. Thus, we conclude that RAPD analysis may be useful in providing genotypic characters for Candida species typing in epidemiological investigations, and also for the rapid identification of pathogenic fungi.
Resumo:
The concept of ideal geometric configurations was recently applied to the classification and characterization of various knots. Different knots in their ideal form (i.e., the one requiring the shortest length of a constant-diameter tube to form a given knot) were shown to have an overall compactness proportional to the time-averaged compactness of thermally agitated knotted polymers forming corresponding knots. This was useful for predicting the relative speed of electrophoretic migration of different DNA knots. Here we characterize the ideal geometric configurations of catenanes (called links by mathematicians), i.e., closed curves in space that are topologically linked to each other. We demonstrate that the ideal configurations of different catenanes show interrelations very similar to those observed in the ideal configurations of knots. By analyzing literature data on electrophoretic separations of the torus-type of DNA catenanes with increasing complexity, we observed that their electrophoretic migration is roughly proportional to the overall compactness of ideal representations of the corresponding catenanes. This correlation does not apply, however, to electrophoretic migration of certain replication intermediates, believed up to now to represent the simplest torus-type catenanes. We propose, therefore, that freshly replicated circular DNA molecules, in addition to forming regular catenanes, may also form hemicatenanes.