987 resultados para DFG-Schwerpunktprogramm 1158 - Antarktisforschung
Resumo:
Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.
Resumo:
Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords
Resumo:
Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.
Resumo:
Bransfield Basin is an actively extending marginal basin separating the inactive South Shetland arc from the northern Antarctic Peninsula. Rift-related volcanism is widespread throughout the central Bransfield Basin, but the wider eastern Bransfield Basin was previously unsampled. Lavas recovered from the eastern subbasin form three distinct groups: (1) Bransfield Group has moderate large-ion lithophile element (LILE) enrichment relative to normal mid-ocean ridge basalt (NMORB), (2) Gibbs Group has strong LILE enrichment and is restricted to a relic seamount interpreted as part of the South Shetland arc, and (3) fresh alkali basalt was recovered from the NE part of the basin near Spanish Rise. The subduction-related component in Bransfield and Gibbs Group lavas is a LILE-rich fluid with radiogenic Sr, Nd, and Pb isotope compositions derived predominantly from subducting sediment. These lavas can be modeled as melts from Pacific MORB source mantle contaminated by up to 5% of the subduction-related component. They further reveal that Pacific mantle, rather than South Atlantic mantle, has underlain Bransfield Basin since 3 Ma. Magma productivity decreases abruptly east of Bridgeman Rise, and lavas with the least subduction component outcrop at that end. Both the eastward decrease in subduction component and occurrence of young alkali basalts require that subduction-modified mantle generated during the lifetime of the South Shetland arc has been progressively removed from NE to SW. This is inconsistent with previous models suggesting continued slow subduction at the South Shetland Trench but instead favors models in which the South Scotia Ridge fault has propagated westward since 3 Ma generating transtension across the basin.
Resumo:
We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6-3.9 Ma) and was combined with d18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in d18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma-mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the d18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record <4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ~2°C.
Resumo:
Meiofauna standing stocks and community structure are reported for the first time for abyssal soft-sediment samples in Antarctic waters. At seven stations within a depth range of 2274-5194 m a total of 128 sediment cores were retrieved with a multiple corer (MUC) on board of the R.V. Polarstern during the ANDEEP-1 cruise (ANT XIX/3). The metazoan meiofauna (defined by a lower size limit of 40 µm) was identified and counted, and one core per station was preserved for CPE, C/N, TOM and grain size analyses. Meiofauna densities are in the range of 2731 Ind./10 cm² at 2290 m depth and 75 Ind./10 cm² at 3597 m depth, with nematodes being the dominant group at all stations. Nematodes account for 84-94% followed by copepods with 2-8% of the total meiofauna. Other frequent taxa found at each station are kinorhynchs, loriciferans, tantulocarids, ostracods and tardigrades. There is a general tendency of decreasing abundances of metazoan meiofauna with increasing depth, but not all higher level taxa displayed this pattern. In addition, a tendency of decreasing higher taxon density with increasing depth was observed. Standing stocks are higher than the average found at similar depths in other oceans.
Resumo:
A metamorphic petrological study, in conjunction with recent precise geochronometric data, revealed a complex P-T-t path for high-grade gneisses in a hitherto poorly understood sector of the Mesoproterozoic Maud Belt in East Antarctica. The Maud Belt is an extensive high-grade, polydeformed, metamorphic belt, which records two significant tectono-thermal episodes, once towards the end of the Mesoproterozoic and again towards the late Neoproterozoic/Cambrian. In contrast to previous models, most of the metamorphic mineral assemblages are related to a Pan-African tectono-thermal overprint, with only very few relics of late Mesoproterozoic granulite-facies mineral assemblages (M1) left in strain-protected domains. Petrological and mineral chemical evidence indicates a clockwise P-T-t path for the Pan-African orogeny. Peak metamorphic (M2b) conditions recorded by most rocks in the area (T = 709-785 °C and P = 7.0-9.5 kbar) during the Pan-African orogeny were attained subsequent to decompression from probably eclogite-facies metamorphic conditions (M2a). The new data acquired in this study, together with recent geochronological and geochemical data, permit the development of a geodynamic model for the Maud Belt that involves volcanic arc formation during the late Mesoproterozoic followed by extension at 1100 Ma and subsequent high-grade tectono-thermal reworking once during continent-continent collision at the end of the Mesoproterozoic (M1; 1090-1030 Ma) and again during the Pan-African orogeny (M2a, M2b) between 565 and 530 Ma. Post-peak metamorphic K-metasomatism under amphibolite-facies conditions (M2c) followed and is ascribed to post-orogenic bimodal magmatism between 500 and 480 Ma.
Resumo:
Up to 2.3 m long sediment sequences were recovered from the deepest part of Lake Hoare in Taylor Valley, southern Victoria Land, Antarctica. Sedimentological, biogeochemical, and mineralogical analyses revealed a high spatial variability of these parameters in Lake Hoare. Five distinct lithological units were recognized. Radiocarbon dating of bulk organic carbon samples from the sediment sequences yielded apparently too old ages and significant age reversals, which prevented the establishment of reliable age-depth models. However, cross correlation of the sedimentary characteristics with those of sediment records from neighbouring Lake Fryxell indicates that the lowermost two units of the Lake Hoare sediment sequences were probably deposited during the final phase of proglacial Lake Washburn, which occupied Taylor Valley during the late Pleistocene and early Holocene. High amounts of angular gravel and the absence of fine-grained material imply a complete desiccation with subaerial conditions in the Lake Hoare basin in the middle of the Holocene. The late Holocene (< c. 3300 calendar yr BP) is characterized by the establishment of environmental conditions similar to those existing today. A late Holocene desiccation event, such as proposed in former studies, is not indicated in the sediment sequences recovered.
Resumo:
The speciation of dissolved zinc (Zn) was investigated by voltammetry in the Atlantic sector of the Southern Ocean along two transects across the major frontal systems: along the Zero Meridian and across the Drake Passage. In the Southern Ocean south of the APF we found detectable labile inorganic Zn throughout the surface waters in contrast to studies from lower latitudes. Using a combination of ASV titrations and pseudopolarography revealed the presence of significant concentration of electrochemically inert Zn ligands throughout the Southern Ocean. These ligands however were nearly always saturated due to the presence of excess concentrations of dissolved Zn that were associated with the high nutrient waters south of the Antarctic Polar Front (APF). Only in surface waters did the concentration of Zn complexing ligands exceed the dissolved Zn concentrations suggesting a biological source for these ligands. Our findings have clear implications for the biogeochemical cycling of Zn and for the interpretation of paleo records utilizing Zn in opal as a tracer of Zn speciation in the water column.
Resumo:
Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing 'classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly 'matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.
Resumo:
Abundance, diversity, and distribution of suprabenthic Isopoda caught from a water layer between 0.27 to 0.60 m above the seafloor were analysed. The samples were taken during the ANT XV/3 cruise on RV Polarstern by means of an epibenthic sledge along two transects in the southern Weddell Sea (Vestkapp and Halley Bay) and another one east of King George Island. At each of these three bathymetric transects, five to six stations were sampled between 200 and 2000 m. In total, 4258 specimens of isopods were sampled at 14 stations standardized to 1000 m2 hauls. 114 species were identified from 49 genera and 23 higher taxa (families and suborders) of Isopoda. Most of them belonged to the suborder Asellota. Dominant families are Munnopsididae (Eurycopinae, Ilyarachninae), Joeropsidae, Munnidae, Paramunnidae, Ischnomesidae and Desmosomatidae. No striking differences were found between areas (Vestkapp, Halley Bay, Kapp Norvegia, and Bransfield Strait). Overall isopod abundances were highest at the shallowest station; species richness was slightly higher above 1000 m depth.
Resumo:
During the 2007-2008 austral spring season, the ANDRILL (Antarctic Drilling project) Southern McMurdo Sound Project recovered an 1138-m-long core, representing the last 20 m.y. of glacial history. An extensive downhole logging program was successfully carried out. Due to drill hole conditions, logs were collected in several passes from the total depth at 1138.54 m below seafloor (mbsf) to 230 mbsf. After data correction, several statistical methods, such as factor analysis, cluster analysis, box-and-whisker diagrams, and cross-plots, were applied. The aim of these analyses was to use detailed interpretation of the downhole logs to obtain a description of the lithologies and their specific physical properties that is independent of the core descriptions. The sediments were grouped into the three main facies, diamictite, mudstone and/or siltstone, and sandstone, and the physical properties of each were determined. Notable findings include the high natural radioactivity values in sandstone and the high and low magnetic susceptibility values in mudstone and/or siltstone and in sandstone. A modified lithology cluster column was produced on the basis of the downhole logs and statistical analyses. It was possible to use the uranium content in the downhole logs to determine hiatuses and thus more accurately place the estimated hiatuses. Using analyses from current literature (geochemistry, clasts, and clay minerals) in combination with the downhole logs (cluster analysis), the depths 225 mbsf, 650 mbsf, 775 mbsf, and 900 mbsf were identified as boundaries of change in sediment composition, provenance, and/or environmental conditions. The main use of log interpretation is the exact definition of lithological boundaries and the modification of the paleoenvironmental interpretation.
Resumo:
A set of 114 samples from the sediment surface of the Atlantic, eastern Pacific and western Indian sectors of the Southern Ocean has been analyzed for 230Th and biogenic silica. Maps of opal content, Th-normalized mass flux, and Th-normalized biogenic opal flux into the sediment have been derived. Significant differences in sedimentation patterns between the regions can be detected. The mean bulk vertical fluxes integrated into the sediment in the open Southern Ocean are found in a narrow range from 2.9 g/m**2 yr (Eastern Weddell Gyre) to 15.8 g/m**2 yr (Indian sector), setting upper and lower limits to the vertically received fraction of open ocean sediments. The silica flux to sediments of the Atlantic sector of the Southern Ocean is found to be 4.2 ± 1.4 * 10**11 mol/yr, just one half of the last estimate. This adjustment represents 6% of the output term in the global marine silica budget.
Resumo:
We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.