983 resultados para Cytokine-mediated Osteoclastogenesis
Resumo:
Interleukin(IL)-18 is a pleiotrophic cytokine with functions in immune modulation, angiogenesis and bone metabolism. In this study, the potential of IL-18 as an immunotherapy for prostate cancer (PCa) was examined using the murine model of prostate carcinoma, RM1 and a bone metastatic variant RM1(BM)/B4H7-luc. RM1 and RM1(BM)/B4H7-luc cells were stably transfected to express bioactive IL-18. These cells were implanted into syngeneic immunocompetent mice, with or without an IL-18-neutralising antibody (αIL-18, SK113AE4). IL-18 significantly inhibited the growth of both subcutaneous and orthotopic RM1 tumors and the IL-18 neutralizing antibody abrogated the tumor growth-inhibition. In vivo neutralization of interferon-gamma (IFN-γ) completely eliminated the anti-tumor effects of IL-18 confirming an essential role of IFN-γ as a down-stream mediator of the anti-tumor activity of IL-18. Tumors from mice in which IL-18 and/or IFN-γ was neutralized contained significantly fewer CD4+ and CD8+ T cells than those with functional IL-18. The essential role of adaptive immunity was demonstrated as tumors grew more rapidly in RAG1−/− mice or in mice depleted of CD4+ and/or CD8+ cells than in normal mice. The tumors in RAG1−/− mice were also significantly smaller when IL-18 was present, indicating that innate immune mechanisms are involved. IL-18 also induced an increase in tumor infiltration of macrophages and neutrophils but not NK cells. In other experiments, direct injection of recombinant IL-18 into established tumors also inhibited tumor growth, which was associated with an increase in intratumoral macrophages, but not T cells. These results suggest that local IL-18 in the tumor environment can significantly potentiate anti-tumor immunity in the prostate and clearly demonstrate that this effect is mediated by innate and adaptive immune mechanisms.
Resumo:
Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 microM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and > 50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and > 37.5 microM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2'-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5'-oxygen in the transition state. We suggest structural reasons why the Mg(2+)-La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction.
Resumo:
Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown.
Resumo:
We examined the effects of progressive resistance training (PRT) and supplementation with calcium-vitamin D(3) fortified milk on markers of systemic inflammation, and the relationship between inflammation and changes in muscle mass, size and strength. Healthy men aged 50-79 years (n = 180) participated in this 18-month randomized controlled trial that comprised a factorial 2 x 2 design. Participants were randomized to (1) PRT + fortified milk supplement, (2) PRT, (3) fortified milk supplement, or (4) a control group. Participants assigned to PRT trained 3 days per week, while those in the supplement groups consumed 400 ml day(-1) of milk containing 1,000 mg calcium plus 800 IU vitamin D(3). We collected venous blood samples at baseline, 12 and 18 months to measure the serum concentrations of IL-6, TNF-alpha and hs-CRP. There were no exercise x supplement interactions, but serum IL-6 was 29% lower (95% CI, -62, 0) in the PRT group compared with the control group after 12 months. Conversely, IL-6 was 31% higher (95% CI, -2, 65) in the supplement group compared with the non-supplemented groups after 12 and 18 months. These between-group differences did not persist after adjusting for changes in fat mass. In the PRT group, mid-tibia muscle cross-sectional area increased less in men with higher pre-training inflammation compared with those men with lower inflammation (net difference similar to 2.5%, p < 0.05). In conclusion, serum IL-6 concentration decreased following PRT, whereas it increased after supplementation with fortified milk concomitant with changes in fat mass. Furthermore, low-grade inflammation at baseline restricted muscle hypertrophy following PRT.
Resumo:
We investigated the effect of carbohydrate ingestion after maximal lengthening contractions of the knee extensors on circulating concentrations of myocellular proteins and cytokines, and cytokine mRNA expression in muscle. Using a cross-over design, 10 healthy males completed 5 sets of 10 lengthening (eccentric) contractions (unilateral leg press) at 120% 1 repetition-maximum. Subjects were randomized to consume a carbohydrate drink (15% weight per volume; 3 g/kg BM) for 3 h after exercise using one leg, or a placebo drink after exercise using the contralateral leg on another day. Blood samples (10 mL) were collected before exercise and after 0, 30, 60, 90, 120, 150, and 180 min of recovery. Muscle biopsies (vastus lateralis) were collected before exercise and after 3 h of recovery. Following carbohydrate ingestion, serum concentrations of glucose (30-90 min and at 150 min) and insulin (30-180 min) increased (P < 0.05) above pre-exercise values. Serum myoglobin concentration increased (similar to 250%; P < 0.05) after both trials. In contrast, serum cytokine concentrations were unchanged throughout recovery in both trials. Muscle mRNA expression for IL-8 (6.4-fold), MCP-1 (4.7-fold), and IL-6 (7.3-fold) increased substantially after carbohydrate ingestion. TNF-alpha mRNA expression did not change after either trial. Carbohydrate ingestion during early recovery from exercise-induced muscle injury may promote proinflammatory reactions within skeletal muscle.
Resumo:
Macrophage inhibitory cytokine-1 (MIC-1/GDF15), a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa) and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1fms) to produce syngeneic TRAMPfmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1fms and syngeneic C57BL/6 mice. Whilst TRAMPfmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU) tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.
Resumo:
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.
Resumo:
Sulforaphane (SF; 4-methylsulfinylbutyl isothiocyanate), a dietary compound derived from broccoli, may exhibit chemopreventive properties by inducing cell cycle arrest via induction of cyclin-dependent kinase inhibitor 1A (p21(waf1/cip1)), but the exact molecular mechanism has not been determined. Here we evaluate the role of the transcription factor Kruppel-like factor 4 (KLF4) in mediating the induction of p21(waf1/cip1) and cellular differentiation by SF and iberin (IB; 3-methylsulphinyl propyl isothiocyanate), also derived from broccoli. Exposure of Caco-2 and Caco-2/TC7 cells to SF and IB increased expression of both KLF4 and p21(waf1/cip1), whereas exposure of HT29 cells resulted only in induction of p21(waf1/cip1). In Caco-2 cells, small interfering RNA knock down of KLF4 expression attenuated induction of p21(waf1/cip1) in response to either SF or IB treatment. Contrary to expectation, prolonged exposure to SF reduced sucrase isomaltase activity, a marker of small intestinal differentiation in Caco-2 cells. Additional support for the SF-mediated induction of p21(waf1/cip1) by KLF4 was obtained from analyses of gastric tissue of Apc(Min/+) mice following acute intervention with SF but not from the analyses of other tissue of the intestinal tract. These results suggest that induction of p21(waf1/cip1) by SF or IB may be partly mediated by KLF4 in some colon cancer cells and tissues.
Resumo:
Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.
Resumo:
Our understanding of the mechanisms of action of GH and its receptor, the GHR, has advanced significantly in the last decade and has provided some important surprises. It is now clear that the GH-GHR axis activates a number of inter-related signalling pathways, not all of which are dependent on the intracellular tyrosine kinase, JAK2 as originally postulated. JAK2-independent pathways, mediated via the Src family kinases, together with a number of negative regulators of GH signalling and emerging cross-talk mechanisms with other growth factor receptors, provide a complex array of mechanisms that are capable of fine-tuning responses to GH in a cell context dependent manner. Additionally, it is also now clear that GH and the GHR can translocate to the nucleus of target cells and initiate, as yet not well defined, nuclear responses. Continued emphasis on elucidation of these complex mechanisms is critical to provide further insights into the diverse physiological and pathophysiological effects of GH.
Resumo:
Despite the rapidly urbanising population, public transport usage in metropolitan areas is not growing at a level that corresponds to the trend. Many people are reluctant to travel using public transport, as it is commonly associated with unpleasant experiences such as limited services, long wait time, and crowded spaces. This study aims to explore the use of mobile spatial interactions and services, and investigate their potential to increase the enjoyment of our everyday commuting experience. The main goal is to develop and evaluate mobile-mediated design interventions to foster interactions for and among passengers, as well as between passengers and public transport infrastructures, with the aim to positively influence the experience of commuting. Ultimately, this study hopes to generate findings and knowledge towards creating a more enjoyable public transport experience, as well as to explore innovative uses of mobile technologies and context-aware services for the urban lifestyle.
Resumo:
Phosphorylation and activation of Akt1 is a crucial signaling event that promotes adipogenesis. However, neither the complex multistep process that leads to activation of Akt1 through phosphorylation at Thr308 and Ser473 nor the mechanism by which Akt1 stimulates adipogenesis is fully understood. We found that the BSD domain–containing signal transducer and Akt interactor (BSTA) promoted phosphorylation of Akt1 at Ser473 in various human and murine cells, and we uncovered a function for the BSD domain in BSTA-Akt1 complex formation. The mammalian target of rapamycin complex 2 (mTORC2) facilitated the phosphorylation of BSTA and its association with Akt1, and the BSTA-Akt1 interaction promoted the association of mTORC2 with Akt1 and phosphorylation of Akt1 at Ser473 in response to growth factor stimulation. Furthermore, analyses of bsta gene-trap murine embryonic stem cells revealed an essential function for BSTA and phosphorylation of Akt1 at Ser473 in promoting adipocyte differentiation, which required suppression of the expression of the gene encoding the transcription factor FoxC2. These findings indicate that BSTA is a molecular switch that promotes phosphorylation of Akt1 at Ser473 and reveal an mTORC2-BSTA-Akt1-FoxC2–mediated signaling mechanism that is critical for adipocyte differentiation.
Resumo:
Background: Recent clinical studies have demonstrated an emerging subgroup of head and neck cancers that are virally mediated. This disease appears to be a distinct clinical entity with patients presenting younger and with more advanced nodal disease, having lower tobacco and alcohol exposure and highly radiosensitive tumours. This means they are living longer, often with the debilitating functional side effects of treatment. The primary objective of this study was to determine how virally mediated nasopharyngeal and oropharyngeal cancers respond to radiation therapy treatment. The aim was to determine risk categories and corresponding adaptive treatment management strategies to proactively manage these patients. Method/Results: 121 patients with virally mediated, node positive nasopharyngeal or oropharyngeal cancer who received radiotherapy treatment with curative intent between 2005 and 2010 were studied. Relevant patient demographics including age, gender, diagnosis, TNM stage, pre-treatment nodal size and dose delivered was recorded. Each patient’s treatment plan was reviewed to determine if another computed tomography (re-CT) scan was performed and at what time point (dose/fraction) this occurred. The justification for this re-CT was determined using four categories: tumour and/or nodal regression, weight loss, both or other. Patients who underwent a re-CT were further investigated to determine whether a new plan was calculated. If a re-plan was performed, the dosimetric effect was quantified by comparing dose volume histograms of planning target volumes and critical structures from the actual treatment delivered and the original treatment plan. Preliminary results demonstrated that 25/121 (20.7%) patients required a re-CT and that these re-CTs were performed between fractions 20 to 25 of treatment. The justification for these re-CTs consisted of a combination of tumour and/or nodal regression and weight loss. 16/25 (13.2%) patients had a replan calculated. 9 (7.4%) of these replans were implemented clinically due to the resultant dosimetric effect calculated. The data collected from this assessment was statistically analysed to identify the major determining factors for patients to undergo a re-CT and/or replan. Specific factors identified included nodal size and timing of the required intervention (i.e. how when a plan is to be adapted). This data was used to generate specific risk profiles that will form the basis of a biologically guided adaptive treatment management strategy for virally mediated head and neck cancer. Conclusion: Preliminary data indicates that virally mediated head and neck cancers respond significantly during radiation treatment (tumour and/or nodal regression and weight loss). Implications of this response are the potential underdosing or overdosing of tumour and/or surrounding critical structures. This could lead to sub-optimal patient outcomes and compromised quality of life. Consequently, the development of adaptive treatment strategies that improve organ sparing for this patient group is important to ensure delivery of the prescribed dose to the tumour volume whilst minimizing the dose received to surrounding critical structures. This could reduce side effects and improve overall patient quality of life. The risk profiles and associated adaptive treatment approaches developed in this study will be tested prospectively in the clinical setting in Phase 2 of this investigation.