986 resultados para Cyclists -- Physiological aspects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

11Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is essential for the local activation of glucocorticoid receptors (GR). Unlike unliganded cytoplasmic GR, 11beta-HSD1 is an endoplasmic reticulum (ER)-membrane protein with lumenal orientation. Cortisone might gain direct access to 11beta-HSD1 by free diffusion across membranes, indirectly via intracellular binding proteins or, alternatively, by insertion into membranes. Membranous cortisol, formed by 11beta-HSD1 at the ER-lumenal side, might then activate cytoplasmic GR or bind to ER-lumenal secretory proteins. Compartmentalization of 11beta-HSD1 is important for its regulation by hexose-6-phosphate dehydrogenase (H6PDH), which regenerates cofactor NADPH in the ER lumen and stimulates oxoreductase activity. ER-lumenal orientation of 11beta-HSD1 is also essential for the metabolism of the alternative substrate 7-ketocholesterol (7KC), a major cholesterol oxidation product found in atherosclerotic plaques and taken up from processed cholesterol-rich food. An 11beta-HSD1 mutant adopting cytoplasmic orientation efficiently catalyzed the oxoreduction of cortisone but not 7KC, indicating access to cortisone from both sides of the ER-membrane but to 7KC only from the lumenal side. These aspects may be relevant for understanding the physiological role of 11beta-HSD1 and for developing therapeutic interventions to control glucocorticoid reactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetic neuropathy (DN) is an important complication contributing to high morbidity and morbidity of diabetic subjects. Primarily, interventional strategies aim at normalization hyperglycemia (to prevent development and progression of DN), at early diagnosis and at prevention of ulcers and amputations. In addition, an increasing number of pharmaceutical agents is used to symptomatically treat dysesthesia and pain associated with DN. During recent years attempts have been made to pharmacologically treat DN by acting on underlying patho-physiological mechanisms (e.g. sorbitol pathway, non-enzymatic glycation, microvascular abnormalities). So far, these strategies have not changed clinical praxis. This review will give a systematic overview of DN and summarize current pharmacological options to symptomatically treat dysesthesia and pain associated with DN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonsense-mediated mRNA decay (NMD) pathway is best known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with ORF-truncating premature termination codons (PTCs), but a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD substrates. We try to decipher the mechanism of mRNA targeting to the NMD pathway in human cells. Recruitment of the conserved RNA-binding helicase UPF1 to target mRNAs has been reported to occur through interaction with release factors at terminating ribosomes, but evidence for translation-independent interaction of UPF1 with the 3’ untranslated region (UTR) of mRNAs has also been reported. We have transcriptome-wide determined the UPF1 binding sites by individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) in human cells, untreated or after inhibiting translation. We detected a strongly enriched association of UPF1 with 3’ UTRs in undisturbed, translationally active cells. After translation inhibition, a significant increase in UPF1 binding to coding sequence (CDS) was observed, indicating that UPF1 binds RNA before translation and gets displaced from the CDS by translating ribosomes. This suggests that the decision to trigger NMD occurs after association of UPF1 with mRNA, presumably through activation of RNA-bound UPF1 by aberrant translation termination. In a second recent study, we re-visited the reported restriction of NMD in mammals to the ‘pioneer round of translation’, i.e. to cap-binding complex (CBC)-bound mRNAs. The limitation of mammalian NMD to early rounds of translation would indicate a – from an evolutionary perspective – unexpected mechanistic difference to NMD in yeast and plants, where PTC-containing mRNAs seem to be available to NMD at each round of translation. In contrast to previous reports, our comparison of decay kinetics of two NMD reporter genes in mRNA fractions bound to either CBC or the eukaryotic initiation factor 4E (eIF4E) in human cells revealed that NMD destabilizes eIF4E-bound transcripts as efficiently as those associated with CBC. These results corroborate an emerging unified model for NMD substrate recognition, according to which NMD can ensue at every aberrant translation termination event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In absence of basic canine hip biomechanics, a specific, consequent three dimensional concept to evaluate the coxofemoral joint was developed for the dog. With the help of a new method to radiologically demonstrate the hip in a physiological standing position several new clinically relevant aspects could be further investigated. For example the breed specific anatomical differences in the hip, and dynamics and the background on "iatrogenic luxations" in HD diagnostics could be shown. The caudal luxation and the growth abnormalities of the hip and their consequences on the whole leg (antetorsion syndrome) as a consequence of inadequate breeding could be demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The quality of teamwork depends not only on communication skills but also on team familiarity and hierarchical structures. The aim of the present study is to evaluate the physiological impact of close teamwork between senior and junior surgeons performing elective open abdominal surgery for six months in stable teams. Methods: Physiological measurements of the main and junior surgeons were taken in a total of 40 procedures. Cumulative stress was assessed by the mea- surements of urine catecholamines (Adrenaline, Noradrenaline, Dopamine, Metanephrine, Normetanephrine). Heart rate variability was measured to assess temporal aspects of stress. The procedures were observed by a trained team of work psychologists. Direct observations of distractors, team inter- actions and communication were performed. Specific questionnaires were filled by members of the surgical team that include surgeons, nurses and anesthetists. Results: In junior surgeons, physiological stress is reduced over a period of close collaboration. Case-related communication is not stressful. However, tension within the surgical team is associated with increased levels of cat- echolamine in the urine of the senior surgeon. The difficulty of the oper- ation impacts on heart-rate variability of the junior but not of the senior surgeon. Conclusion: Junior surgeons may require months of teamwork within one stable team in order to reduce levels of physiological stress. Senior surgeons are more resistant to stressful clinical situations compared to junior surgeons but are vulnerable to tension within the surgical team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter the basic aspects helping to understand the microbiome in terms of quantity, diversity, complexity, function, and interaction with the host are discussed. First the nomenclature, definitions of taxa, and measures of diversity as well as methods to unravel this kingdom are outlined. A brief summary on its physiological relevance for general health and the functions exerted specifically by the microbiome is presented. Differences in the composition of the microbiome along the gastrointestinal tract and across the gut wall and its interindividual variations, enterotypes, and stability are highlighted. The reader will be familiarized with all different modulators impacting on the microbiome, namely, intrinsic and extrinsic factors. Intrinsic factors include gastrointestinal secretions (gastric acid, bile, pancreatic juice, mucus), antimicrobial peptides, motility, enteric nervous system, and host genotype. Extrinsic factors are mainly dietary choices, hygiene, stress, alcohol consumption, exercise, and medications. The second part of the chapter focuses on quantitative and qualitative changes in microbiome in liver cirrhosis. The mechanisms contributing to dysbiosis, small intestinal bacterial overgrowth, and bacterial translocation are delineated underscoring their role for the liver-gut axis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The notion that changes in synaptic efficacy underlie learning and memory processes is now widely accepted even if definitive proof of the synaptic plasticity and memory hypothesis is still lacking. When learning occurs, patterns of neural activity representing the occurrence of events cause changes in the strength of synaptic connections within the brain. Reactivation of these altered connections constitutes the experience of memory for these events and for other events with which they may be associated. These statements summarize a long-standing theory of memory formation that we refer to as the synaptic plasticity and memory hypothesis. Since activity-dependent synaptic plasticity is induced at appropriate synapses during memory formation, and is both necessary and sufficient for the information storage, we can speculate that a methodological study of the synapse will help us understand the mechanism of learning. Random events underlie a wide range of biological processes as diverse as genetic drift and molecular diffusion, regulation of gene expression and neural network function. Additionally spatial variability may be important especially in systems with nonlinear behavior. Since synapse is a complex biological system we expect that stochasticity as well as spatial gradients of different enzymes may be significant for induction of plasticity. ^ In that study we address the question "how important spatial and temporal aspects of synaptic plasticity may be". We developed methods to justify our basic assumptions and examined the main sources of variability of calcium dynamics. Among them, a physiological method to estimate the number of postsynaptic receptors as well as a hybrid algorithm for simulating postsynaptic calcium dynamics. Additionally we studied how synaptic geometry may enhance any possible spatial gradient of calcium dynamics and how that spatial variability affect plasticity curves. Finally, we explored the potential of structural synaptic plasticity to provide a metaplasticity mechanism specific for the synapse. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Protein utilisation and turnover were measured in male chickens sampled from a line selected for high breast yield and a randombred control line (lines QL and CL, experiment 1) and in male chickens sampled from lines selected for either high or low abdominal fatness (lines FL and LL, experiment 2). In each experiment, 18 birds per line were given iso-energetic (12.9 MJ ME/kg) diets containing either 120 or 220 g CP/kg from 21 to 29 d (experiment 1) and 33 to 43 d (experiment 2). 2. Measurements were made of growth rate, food intake, body composition, excreta production and N-tau-methylhistidine excretion as a measure of myofibrillar protein breakdown, and fractional rates (%/d) of protein deposition, breakdown and synthesis were calculated. 3. In experiment 1, there were no significant differences between the line means for the fractional measures of protein turnover, but there was marked differential response in the two lines in the fractional rates of protein deposition, breakdown and synthesis, to increase in protein intake. The positive slope of the regressions of fractional (%/d) protein deposition and synthesis rates on protein intake (g/d/kg BW) were approximately 1.4- and 2.0-fold higher respectively in the QL than the CL line birds, and the negative slope of the regression of fractional breakdown rate on protein intake was approximately threefold greater in the CL than the QL line birds. 4. In experiment 2, fractional deposition rate was 6.2% lower, but fractional breakdown rate 9.4% higher in the LL than the FL birds, whilst there was essentially no difference in response of the FL and LL birds in the components of protein turnover to increase in protein intake. Line differences in deposition and breakdown rates were thus a reflection of the considerably higher (20%) food and hence protein intake in the FL than the LL birds. 5. The differential line responses in protein turnover in the two experiments suggest that selection for increased breast muscle yield and for reduced body fatness manipulate different physiological pathways in relation to protein turnover, but neither selection strategy results in an improvement in net protein utilisation at typical levels of protein intake by birds on commercial broiler diets, through a reduction in protein breakdown rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Psychokinetic phenomena are currently anomalous with respect to physics. They are not generally accepted as genuine nor are their possible physical mechanisms understood. It is argued here that a certain class of psychokinetic phenomena, termed "directly detectable" psychokinetic effects, are likely to yield possibly important insights into the physical mechanisms mediating psychokinetic phenomena generally. The current use within parapsychological research of randomly behaving psychokinetic target systems is criticised on several grounds. They are of limited scope for use in delineation of physical mechanisms involved in psychokinesis, and their intrinsic characteristics prevent subjects from utilising their possible capacity to learn to produce larger magnitude effects. It is argued that instrumented directly detectable psychokinetic tasks have characteristics which may allow subjects to treat their psychokinetic ability as akin to a normal skill which can be improved with continued practice, using an experimental paradigm similar to that used in the biofeedback training of physiological functions. The task used in this work was a microscopic form of psychokinetic metal-bending, whereby subjects produce pulse-like electrical outputs in a ceramic piezoelectric element used as psychokinetic target. Subjects were not allowed to touch the target and many effects were obtained under witnessed conditions with subjects situated several metres from it. One pilot and three principal longitudinal training studies were performed with a total of seventeen subjects. Six of the seventeen subjects showed significant improvement in their psychokinetic performance in the training studies, one showed a non-significant increase. The other ten failed to show any convincing signs of psychokinetic output. Three of the successful subjects did not show convincing signs of voluntary control over their effects, three did. Large individual differences were found including different rates of learning and levels of initial and final ability. This research was performed by Julian David Isaacs in preparation for the degree of Doctor of Philosophy and was submitted in 1984.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under conditions of reduced visual stimulation, the systems of accommodation and vergence tend towards physiological resting states that are intermediate within their functional range. The terms tonic accommodation (TA) and tonic vergence (TV) are used in the study to describe these stimulus-free, intermediate adjustments and to represent the systems as being in a state of innervational tonicity. The literature relating to TA and TV and the various experiments of this thesis are reviewed. Methodology has been developed enabling the determination of TA and TV under conditions of total darknessl laser optometry for TA and ~ernier-alignment for TV. The thesis describes a series of experiments designed to investigate various aspects of TA and TV, and their role in ametropia, binocular vision and their adaptation to sustained visual tasks. Measurements of TA were also utilised to investigate the effect of various autonomic effector drugs on the ciliary muscle. The effects of ethanol on binocular function are shown to be directly proportional to the .initial level of TVJ which is itself unaffected. These results support the concept of TV as the reference point for normal vergence responses. The results of the pharmacological investigations indicate the presence of a small but significant, beta-receptor mediated inhibitory sympathetic input to the ciliary muscle, and that the wide distribution in TA is a consequence of inter-observer variations in parasympathetic, rather than sympathetic tone. Following interaction with visual tasks of t5mins duration, the levels of TA and TV are found to be biased in the direction of, and proportional to, the task position: except during near-task viewing where the task-to-TA stimulus-distance exceeds 1.5D (for TA) and 3.5deg (for TV). Under these conditions the expected level of bias is attenuated, Adaptive models are discussed, proposing TA and TV as the reference points of the accommodative and vergence system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separate physiological mechanisms which respond to spatial and temporal stimulation have been identified in the visual system. Some pathological conditions may selectively affect these mechanisms, offering a unique opportunity to investigate how psychophysical and electrophysiological tests reflect these visual processes, and thus enhance the use of the tests in clinical diagnosis. Amblyopia and optical blur were studied, representing spatial visual defects of neural and optical origin, respectively. Selective defects of the visual pathways were also studied - optic neuritis which affects the optic nerve, and dementia of the Alzheimer type in which the higher association areas are believed to be affected, but the primary projections spared. Seventy control subjects from 10 to 79 years of age were investigated. This provided material for an additional study of the effect of age on the psychophysical and electrophysiological responses. Spatial processing was measured by visual acuity, the contrast sensitivity function, or spatial modulation transfer function (MTF), and the pattern reversal and pattern onset-offset visual evoked potential (VEP). Temporal, or luminance, processing was measured by the de Lange curve, or temporal MTF, and the flash VEP. The pattern VEP was shown to reflect the integrity of the optic nerve, geniculo striate pathway and primary projections, and was related to high temporal frequency processing. The individual components of the flash VEP differed in their characteristics. The results suggested that the P2 component reflects the function of the higher association areas and is related to low temporal frequency processing, while the Pl component reflects the primary projection areas. The combination of a delayed flash P2 component and a normal latency pattern VEP appears to be specific to dementia of the Alzheimer type and represents an important diagnostic test for this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small intestine poses a major barrier to the efficient absorption of orally administered therapeutics. Intestinal epithelial cells are an extremely important site for extrahepatic clearance, primarily due to prominent P-glycoprotein-mediated active efflux and the presence of cytochrome P450s. We describe a physiologically based pharmacokinetic model which incorporates geometric variations, pH alterations and descriptions of the abundance and distribution of cytochrome 3A and P-glycoprotein along the length of the small intestine. Simulations using preclinical in vitro data for model drugs were performed to establish the influence of P-glycoprotein efflux, cytochrome 3A metabolism and passive permeability on drug available for absorption within the enterocytes. The fraction of drug escaping the enterocyte (F(G)) for 10 cytochrome 3A substrates with a range of intrinsic metabolic clearances were simulated. Following incorporation of P-glycoprotein in vitro efflux ratios all predicted F(G) values were within 20% of observed in vivo F(G). The presence of P-glycoprotein increased the level of cytochrome 3A drug metabolism by up to 12-fold in the distal intestine. F(G) was highly sensitive to changes in intrinsic metabolic clearance but less sensitive to changes in intestinal drug permeability. The model will be valuable for quantifying aspects of intestinal drug absorption and distribution.