954 resultados para Cyclic AMP Response Element Modulator
Resumo:
Production and secretion of testosterone in Leydig cells are mainly controlled by the luteinizing hormone (LH). Biochemical evidences suggest that the activity of Cl(-) ions can modulate the steroidogenic process, but the specific ion channels involved are not known. Here, we extend the characterization of Cl(-) channels in mice Leydig cells (50-60 days old) by describing volume- activated Cl(-) currents (I(Cl,swell)). The amplitude of I(Cl,swell) is dependent on the osmotic gradient across the cell membrane, with an apparent EC(50) of similar to 75 mOsm. These currents display the typical biophysical signature of volume- activated anion channels (VRAC): dependence on intracellular ATP, outward rectification, inactivation at positive potentials, and selectivity sequence (I(-)>Cl(-)>F(-)). Staurosporine (200 nM) did not block the activation of I(Cl), swell. The block induced by 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB; 128 mu M), SITS (200 mu M), ATP (500 mu M), pyridoxalphosphate-6- azophenyl-2`,4`-disulfonate (PPADS; 100 mu M), and Suramin (10 mu M) were described by the permeant blocker model with apparent dissociation constant at 0 mV K(d)(0) and fractional distance of the binding site (delta) of 334 mu M and 47%, 880 mu M and 35%, 2,100 mu M and 49%, 188 mu M and 27%, and 66.5 mu M and 49%, respectively. These numbers were derived from the peak value of the currents. We conclude that ICl, swell in Leydig cells are activated independently of purinergic stimulation, that Suramin and PPADS block these currents by a direct interaction with VRAC and that ATP is able to permeate this channel.
Resumo:
Context: Type 1 pseudohypoaldosteronism (PHA1), a primary form of mineralocorticoid resistance, isdueto inactivating mutations of the NR3C2 gene, coding for the mineralocorticoid receptor (MR). Objective: The objective of the study was to assess whether different NR3C2 mutations have distinct effects on the pattern of MR-dependent transcriptional regulation of aldosterone-regulated genes. Design and Methods: Four MR mutations affecting residues in the ligand binding domain, identified in families with PHA1, were tested. MR proteins generated by site-directed mutagenesis were analyzed for their binding to aldosterone and were transiently transfected into renal cells to explore the functional effects on the transcriptional activity of the receptors by cis-trans-cotrans-activation assays and by measuring the induction of endogenous gene transcription. Results: Binding assays showed very low or absent aldosterone binding for mutants MR(877Pro), MR(848Pro), and MR(947stop) and decreased affinity for aldosterone of MR(843Pro). Compared with wildtype MR, the mutations p.Leu843Pro and p.Leu877Pro displayed half-maximal aldosterone-dependent transactivation of reporter genes driven by mouse mammary tumor virus or glucocorticoid response element-2 dependent promoters, whereas MR(848Pro) and MR(947stop) nearly or completely lost transcriptional activity. Although MR(848Pro) and MR(947stop) were also incapable of inducing aldosterone-dependent gene expression ofendogenoussgk1, GILZ, NDRG2, and SCNN1A, MR(843Pro) retained complete transcriptional activity on sgk1 and GILZ gene expression, and MR(877Pro) negatively affected the expression of sgk1, NDRG2, and SCNN1A. Conclusions: Our data demonstrate that MR mutations differentially affect individual gene expression in a promoter-dependent manner. Investigation of differential gene expression profiles in PHA1 may allow a better understanding of the molecular substrate of phenotypic variability and to elucidate pathogenic mechanisms underlying the disease. (J Clin Endocrinol Metab 96: E519-E527, 2011)
Resumo:
K(V)LQT1 (K(V)LQ1) is a voltage-gated K+ channel essential for repolarization of the heart action potential that is defective in cardiac arrhythmia. The channel is inhibited by the chromanol 293B, a compound that blocks cAMP-dependent electrolyte secretion in rat and human colon, therefore suggesting expression of a similar type of K+ channel in the colonic epithelium. We now report cloning and expression of K(V)LQT1 from rat colon. Overlapping clones identified by cDNA-library screening were combined to a full length cDNA that shares high sequence homology to K(V)LQT1 cloned from other species. RT-PCR analysis of rat colonic musoca demonstrated expression of K(V)LQT1 in crypt cells and surface epithelium. Expression of rK(V)LQT1 in Xenopus oocytes induced a typical delayed activated K+ current. that was further activated by increase of intracellular cAMP but not Ca2+ and that was blocked by the chromanol 293B. The same compound blocked a basolateral cAMP-activated K+ conductance in the colonic mucosal epithelium and inhibited whole cell K+ currents in patch-clamp experiments on isolated colonic crypts. We conclude that K(V)QT1 is forming an important component of the basolateral cAMP-activated K+ conductance in the colonic epithelium and plays a crucial role in diseases like secretory diarrhea and cystic fibrosis.
Resumo:
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.
Resumo:
It has been reported that mutations in the quorum-sensing genes lasI and rhlI in Pseudomonas aeruginosa result in, among many other things, loss of twitching motility (A. Glessner, R. S. Smith, B. H. Iglewski, and J. B. Robinson, J. Bacteriol. 181:1623-1629, 1999). We constructed knockouts of lasI and rhlI and the corresponding regulatory genes lasR and rhlR and found no effect on twitching motility. However, twitching-defective variants accumulated during culturing of lasI and rhlI mutants. Further analysis showed that the stable twitching-defective variants of lasI and rhlI mutants had arisen as a consequence of secondary mutations in vfr and algR, respectively, both of which encode key regulators affecting a variety of phenotypes, including twitching motility. In addition, when grown in shaking broth culture, lasI and rhlI mutants, but not the wild-type parent, also accumulated unstable variants that lacked both twitching motility and swimming motility and appeared to be identical in phenotype to the S1 and S2 variants that were recently reported to occur at high frequencies in P. aeruginosa strains grown as a biofilm or in static broth culture (E. Deziel, Y. Comeau, and R. Villemur, J. Bacteriol. 183:1195-1204, 2001). These results indicate that mutations in one regulatory system may create distortions that select during subsequent culturing for compensatory mutations in other regulatory genes within the cellular network. This problem may have compromised some past studies of regulatory hierarchies controlled by quorum sensing and of bacterial regulatory systems in general.
Resumo:
Two forms of the activated beta(1)-adrenoceptor exist, one that is stabilized by (-)-noradrenaline and is sensitive to blockade by (-)-propranolol and another which is stabilized by partial agonists such as (-)-pindolol and (-)-CGP 12177 but is relatively insensitive to (-)-propranolol. We investigated the effects of stimulation of the propranolol-resistant PI-adrenoceptor in the human heart. Myocardium from non-failing and failing human hearts were set up to contract at 1 Hz. In right atrium from non-ailing hearts in the presence of 200 nM (-)-propranolol, (-)-CGP 12177 caused concentration-dependent increases in contractile force (-logEC(50)[M] 7.3+/-0.1, E-max 23+/-1% relative to maximal (-)-isoprenaline stimulation of beta(1)- and beta(2)-adrenoceptors, n=86 patients), shortening of the time to reach peak force (-logEC(50)[M] 7.4+/-0.1, E-max 37+/-5%, n=61 patients) and shortening of the time to reach 50% relaxation (t(50%), -logEC(50)[M] 7.3+/-0.1, E-max 33+/-2%, n=61 patients). The potency and maxima of the positive inotropic effects were independent of Ser49Gly- and Gly389Arg-beta(1)-adrenoceptor polymorphisms but were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (-logEC(50)[M] 7.7+/-0.1, E-max 68+/-6%, n=6 patients, P
Resumo:
Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.
Resumo:
Specific neuronal mRNAs are localized in dendrites, often concentrated in dendritic spines and spine synapses, where they are translated. The molecular mechanism of localization is mostly unknown. Here we have explored the roles of A2 response element (A2RE), a cis-acting signal for oligodendrocyte RNA trafficking, and its cognate trans-acting factor, heterogeneous nuclear ribonucleoprotein ( hnRNP) A2, in neurons. Fluorescently labeled chimeric RNAs containing A2RE were microinjected into hippocampal neurons, and RNA transport followed using confocal laser scanning microscopy. These RNA molecules, but not RNA lacking the A2RE sequence, were transported in granules to the distal neurites. hnRNP A2 protein was implicated as the cognate trans-acting factor: it was colocalized with RNA in cytoplasmic granules, and RNA trafficking in neurites was compromised by A2RE mutations that abrogate hnRNP A2 binding. Coinjection of antibodies to hnRNP A2 halved the number of trafficking cells, and treatment of neurons with antisense oligonucleotides also disrupted A2RE - RNA transport. Colchicine inhibited trafficking, whereas cells treated with cytochalasin were unaffected, implicating involvement of microtubules rather than microfilaments. A2RE-like sequences are found in a subset of dendritically localized mRNAs, which, together with these results, suggests that a molecular mechanism based on this cis-acting sequence may contribute to dendritic RNA localization.
Resumo:
Lipid homeostasis is controlled by the peroxisome proliferator-activated receptors (PPARalpha, -beta/delta, and -gamma) that function as fatty acid-dependent DNA-binding proteins that regulate lipid metabolism. In vitro and in vivo genetic and pharmacological studies have demonstrated PPARalpha regulates lipid catabolism. In contrast, PPARgamma regulates the conflicting process of lipid storage. However, relatively little is known about PPARbeta/delta in the context of target tissues, target genes, lipid homeostasis, and functional overlap with PPARalpha and -gamma. PPARbeta/delta, a very low-density lipoprotein sensor, is abundantly expressed in skeletal muscle, a major mass peripheral tissue that accounts for approximately 40% of total body weight. Skeletal muscle is a metabolically active tissue, and a primary site of glucose metabolism, fatty acid oxidation, and cholesterol efflux. Consequently, it has a significant role in insulin sensitivity, the blood-lipid profile, and lipid homeostasis. Surprisingly, the role of PPARbeta/delta in skeletal muscle has not been investigated. We utilize selective PPARalpha, -beta/delta, -gamma, and liver X receptor agonists in skeletal muscle cells to understand the functional role of PPARbeta/delta, and the complementary and/or contrasting roles of PPARs in this major mass peripheral tissue. Activation of PPARbeta/delta by GW501516 in skeletal muscle cells induces the expression of genes involved in preferential lipid utilization, beta-oxidation, cholesterol efflux, and energy uncoupling. Furthermore, we show that treatment of muscle cells with GW501516 increases apolipoprotein-A1 specific efflux of intracellular cholesterol, thus identifying this tissue as an important target of PPARbeta/delta agonists. Interestingly, fenofibrate induces genes involved in fructose uptake, and glycogen formation. In contrast, rosiglitazone-mediated activation of PPARgamma induces gene expression associated with glucose uptake, fatty acid synthesis, and lipid storage. Furthermore, we show that the PPAR-dependent reporter in the muscle carnitine palmitoyltransferase-1 promoter is directly regulated by PPARbeta/delta, and not PPARalpha in skeletal muscle cells in a PPARgamma coactivator-1-dependent manner. This study demonstrates that PPARs have distinct roles in skeletal muscle cells with respect to the regulation of lipid, carbohydrate, and energy homeostasis. Moreover, we surmise that PPARgamma/delta agonists would increase fatty acid catabolism, cholesterol efflux, and energy expenditure in muscle, and speculate selective activators of PPARbeta/delta may have therapeutic utility in the treatment of hyperlipidemia, atherosclerosis, and obesity.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Biology
Resumo:
In liver, the glyoxylate cycle contributes to two metabolic functions, urea and glucose synthesis. One of the key enzymes in this pathway is glyoxylate reductase/hydroxypyruvate reductase (GRHPR) whose dysfunction in human causes primary hyperoxaluria type 2, a disease resulting in oxalate accumulation and formation of kidney stones. In this study, we provide evidence for a transcriptional regulation by the peroxisome proliferator-activated receptor alpha (PPARalpha) of the mouse GRHPR gene in liver. Mice fed with a PPARalpha ligand or in which PPARalpha activity is enhanced by fasting increase their GRHPR gene expression via a peroxisome proliferator response element located in the promoter region of the gene. Consistent with these observations, mice deficient in PPARalpha present higher plasma levels of oxalate in comparison with their wild type counterparts. As expected, the administration of a PPARalpha ligand (Wy-14,643) reduces the plasma oxalate levels. Surprisingly, this effect is also observed in null mice, suggesting a PPARalpha-independent action of the compound. Despite a high degree of similarity between the transcribed region of the human and mouse GRHPR gene, the human promoter has been dramatically reorganized, which has resulted in a loss of PPARalpha regulation. Overall, these data indicate a species-specific regulation by PPARalpha of GRHPR, a key gene of the glyoxylate cycle.
Resumo:
Schwann cells synthesize a large amount of membrane that form a specialized structure called myelin that surrounds axons and facilitate the transmission of electrical signal along neurons in peripheral nervous system (PNS). Previous studies demonstrated that both Schwann cell differentiation and de-differentiation (in the situation of a nerve injury or demyelinating disease) are regulated by cell-intrinsic regulators including several transcription factors. In particular, the de-differentiation of mature Schwann cells is driven by the activation of multiple negative regulators of myelination including Sox2, c-Jun, Notch and Pax3, all usually expressed in immature Schwann cells and suppressed at the onset of myelination. In order to identify new regulators of myelination involved in the development of the PNS, we analyzed the gene-expression profiling data from developing PNS and from three models of demyelinating neuropathies. This analysis led to the identification of Sox4, a member of the Sox family of transcription factors, as a potential candidate. To characterize the molecular function of Sox4 in PNS, we generated two transgenic lines of mice, which overexpress Sox4 specifically in Schwann cells. Detailed analysis of these mice showed that the overexpression of Sox4 in Schwann cells causes a delay in progression of myelination between post-natal day 2 (P2) and P5. Our in vitro analysis suggested that Sox4 cDNA can be overexpressed while the protein translation is tightly regulated. Interestingly, we observed that Sox4 protein is stabilized in nerves of the CMT4C mouse, a model of the human neuropathy. We therefore crossed Sox4 transgenic mice with CMT4C mice and we observed that Sox4 overexpression exacerbated the neuropathy phenotype in these mice. While recognized as being crucial for the normal function of both neurons and myelinating glial cells, the processes that regulate the beginning of myelination and the nature of the neuro-glial cross-talk remains mostly unknown. In order to gain insight into the molecular pathways involved in the interactions between neurons and associated glial cells, we developed a neuron-glia co-culture system based on microfluidic chambers and successfully induced myelination in this system by ascorbic acid. Importantly, we observed that in addition to acting on Schwann cells, ascorbic acid also modulate neuronal/axonal NRG1/ErbB2-B3 signalling. The experimental setting used in our study thus allowed us to discover a novel phenomena of propagation for myelination in vitro. The further characterization of this event brought us to identify other compounds able to induce myelination: ADAMs secretases inhibitor GM6001 and cyclic-AMP. The results generated during my thesis project are therefore not only important for the advancement of our understanding of how the PNS works, but may also potentially help to develop new therapies aiming at improvement of PNS myelination under disease conditions. - Les cellules de Schwann synthétisent une grande quantité de membrane formant une structure spécialisée appelée myéline qui entoure les axones et facilite la transmission du signal électrique le long des neurones du système nerveux périphérique (SNP). Des études antérieures ont démontré que la différenciation et la dédifférenciation des cellules de Schwann (dans la situation d'une lésion nerveuse ou d'une maladie démyélinisante) sont régulées par des régulateurs cellulaires intrinsèques, incluant plusieurs facteurs de transcription. En particulier, la dédifférenciation des cellules de Schwann matures est contrôlée par l'activation de plusieurs régulateurs négatifs de la myélinisation dont Sox2, c-Jun, Notch et Pax3, tous habituellement exprimés dans des cellules de Schwann immatures et supprimés au début de la myélinisation. Afin d'identifier de nouveaux régulateurs de myélinisation impliqués dans le développement du SNP, nous avons analysé le profil d'expression génique durant le développement du SNP ainsi que dans trois modèles de neuropathies démyélinisantes. Cette analyse a mené à l'identification de Sox4, un membre de la famille des facteurs de transcription Sox, comme étant un candidat potentiel. Dans le but de caractériser la fonction moléculaire de Sox4 dans le SNP, nous avons généré deux lignées transgéniques de souris qui surexpriment Sox4 spécifiquement dans les cellules de Schwann. L'analyse détaillée de ces souris a montré que la surexpression de Sox4 dans les cellules de Schwann provoque un retard dans la progression de la myélinisation entre le jour postnatal 2 (P2) et P5. Notre analyse in vitro a suggéré que l'ADNc de Sox4 peut être surexprimé alors que la traduction des protéines est quand à elle étroitement régulée. De façon intéressante, nous avons observé que la protéine Sox4 est stabilisée dans les nerfs des souris CMT4C, un modèle de neuropathie humaine. Nous avons donc croisé les souris transgéniques Sox4 avec des souris CMT4C et avons observé que la surexpression de Sox4 exacerbe le phénotype de neuropathie chez ces souris. Bien que reconnus comme étant cruciaux pour le fonctionnement normal des neurones et des cellules gliales myélinisantes, les processus qui régulent le début de la myélinisation ainsi que la nature des interactions neurone-glie restent largement méconnus. Afin de mieux comprendre les mécanismes moléculaires impliqués dans les interactions entre les neurones et les cellules gliales leur étant associés, nous avons développé un système de co-culture neurone-glie basé sur des chambres microfluidiques et y avons induit avec succès la myélinisation avec de l'acide ascorbique. Étonnamment, nous avons remarqué que, en plus d'agir sur les cellules de Schwann, l'acide ascorbique module également la voie de signalisation neuronale/axonale NRG1/ErbB2-B3. Le protocole expérimental utilisé dans notre étude a ainsi permis de découvrir un nouveau phénomène de propagation de la myélinisation in vitro. La caractérisation plus poussée de ce phénomène nous a menés à identifier d'autres composés capables d'induire la myélinisation: L'inhibiteur de sécrétases ADAMs GM6001 et l'AMP cyclique. Les résultats obtenus au cours de mon projet de thèse ne sont donc pas seulement importants pour l'avancement de notre compréhension sur la façon dont le SNP fonctionne, mais peuvent aussi potentiellement aider à développer de nouvelles thérapies visant à l'amélioration de la myélinisation du SNP dans des conditions pathologiques.
Resumo:
The beta thyroid hormone receptor (TRbeta), but not TRalpha1, plays a specific role in mediating T(3)-dependent repression of hypothalamic TRH transcription. To investigate the structural basis of isoform specificity, we compared the transcriptional regulation and DNA binding obtained with chimeric and N-terminally deleted TRs. Using in vivo transfection assays to follow hypothalamic TRH transcription in the mouse brain, we found that TRbeta1 and chimeras with the TRbeta1 N terminus did not affect either transcriptional activation or repression from the rat TRH promoter, whereas N-terminally deleted TRbeta1 impaired T(3)-dependent repression. TRalpha1 or chimeras with the TRalpha1 N terminus reduced T(3)-independent transcriptional activation and blocked T(3)-dependent repression of transcription. Full deletion of the TRalpha1 N terminus restored ligand-independent activation of transcription. No TR isoform specificity was seen after transcription from a positive thyroid hormone response element. Gel mobility assays showed that all TRs tested bound specifically to the main negative thyroid hormone response element in the TRH promoter (site 4). Addition of neither steroid receptor coactivator 1 nor nuclear extracts from the hypothalamic paraventricular nuclei revealed any TR isoform specificity in binding to site 4. Thus N-terminal sequences specify TR T(3)-dependent repression of TRH transcription but not DNA recognition, emphasizing as yet unknown neuron-specific contributions to protein-promoter interactions in vivo.
Resumo:
Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.
Resumo:
Mice in which peroxisome proliferator-activated receptor beta (PPARbeta) is selectively ablated in skeletal muscle myocytes were generated to elucidate the role played by PPARbeta signaling in these myocytes. These somatic mutant mice exhibited a muscle fiber-type switching toward lower oxidative capacity that preceded the development of obesity and diabetes, thus demonstrating that PPARbeta is instrumental in myocytes to the maintenance of oxidative fibers and that fiber-type switching is likely to be the cause and not the consequence of these metabolic disorders. We also show that PPARbeta stimulates in myocytes the expression of PGC1alpha, a coactivator of various transcription factors, known to play an important role in slow muscle fiber formation. Moreover, as the PGC1alpha promoter contains a PPAR response element, the effect of PPARbeta on the formation and/or maintenance of slow muscle fibers can be ascribed, at least in part, to a stimulation of PGC1alpha expression at the transcriptional level.