982 resultados para Cultivation of coca


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study aimed to evaluate chemical, microbiological and hydro-physical changes of a Dystrophic Yellow Latosol, receiver of different levels of manipueira (cassava wastewater) application, in the cultivation of 'Terra Maranhão' banana. The experimental design was a randomized block with three replications in a factorial scheme 3 x 4, in which it was considered three soil depths and four levels of manipueira. It was evaluated the weighted mean diameter of the aggregate, the percentage of aggregation at different periods, soil density, particle density, porosity and soil saturated hydraulic conductivity, in addition to pH of P (mg dm -3), K (mg dm-3), Ca (cmolc dm-3), Mg (cmolc dm-3), Ca+Mg (cmolc dm-3), Al (cmolc dm-3), Na (cmolc dm -3), H+Al (cmolc dm-3), CEC (cmolc dm-3), V%, OM (g kg-1), soil microbial biomass (Ug Cg-1 dry soil), acid phosphatase (Ug PNP g-1 h-1). The use of manipueira influenced some physical characteristic of the soil, but it was not possible to specify the effect of increasing application dosage. Therefore, the application did not affect the biological indicators assessed in the soil or its pH. The use of manipueira as a fertilizer in the doses used in this study showed low increase of K, P, H+Al and Al in the soil and a good increase of Mg, Ca and Ca+Mg, Na, CEC and V%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to analyze, under the energetic point of view, the cultivation of corn in three management systems (low, medium and high-tech), using two landrace varieties ('Argentino' and 'BR da Várzea'), a double hybrid cultivar (SHS 4080) and a simple hybrid (IAC 8333). Five performance indicators were used: energy efficiency, liquid cultural energy, cultural efficiency, energy balance and productive energy efficiency. From the perspective of family farming, it was verified the largest social importance of the systems under low and medium levels of technology, due to the increase employment capacity of rural labor. The liquid cultural energy and energy balance were more favorable for the system under high technological level, unlike cultural efficiency and productive energy efficiency, which were significantly higher for medium and low technological levels. The variety 'Argentino' showed lower productive energy efficiency. The variety 'BR da Várzea', on the other hand, presented the potential to generate energy as much as the hybrids. In general, the biggest sustainability in the corn crop was achieved when the management system under medium and lower levels of technology were used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This experiment was conducted in Lavras - state of Minas Gerais (MG), Brazil, in a protected environment, and aims to estimate the irrigation depths that maximize productivity and economic returns in the cultivation of asparagus bean and analyze the economic viability of irrigation management. The experimental delineation was randomized blocks with five treatments and four replications. The treatments consisted of five drip irrigation depths: 40, 70, 100, 130 and 160% of water replacement depth up to field capacity. The depths of water that maximize productivity and economic returns were obtained from the regression model adjusted to productivity data, cost of product relations and water cost. The economic viability was achieved on the benefit/cost ratio basis. The depth with the maximum economic return was estimated in 434.4mm, with a productivity of 35,160.6kg ha-1, which is economically viable for the cultivation of asparagus bean, with a expected profitability of R$ 1.70 for every real invested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to identify alternatives for the use of saline water in agricultural production, the effects of the use of brackish water in the preparation of the nutrient solution for the cultivation of sunflower (cv. EMBRAPA 122-V2000) were studied in hydroponic system on consumption and efficiency of water use for the production of achenes and biomass. A completely randomized design was used, analyzed in a 5x2 factorial scheme with three replications. The factors studied were five levels of salinity of nutrient solution (1.7 - control; 4.3; 6.0; 9.0; and 11.5dS m-1) and two plant densities - one or two plants per vessel. It was concluded that the water consumption of sunflower is a variable sensitive to the salinity of the nutrient solution, especially after the fourth week of crop, and that the efficiency of water use in the production of achenes and biomass of sunflower is greater when the plant density increases from one to two plants per vessel, even under saline stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this study was to evaluate the use of subsoiling, gypsum and organic matter associated with the cultivation of cotton, sunflower and cowpea in crop rotation, seeking the reclamation and use of a saline-sodic soil. The treatments were arranged in a randomized block design in split plots with four replications, during two crop cycles (2009/2010 and 2010/2011). The plots were formed by the treatments: T1. Subsoiling (S); T2. S + 20 Mg ha-1 of gypsum; T3. S + 40 Mg ha-1 of organic matter; T4. S + 10 Mg ha-1 of gypsum + 20 Mg ha-1 of organic matter; T5. S + 20 Mg ha-1 of gypsum + 40 Mg ha-1 of organic matter and the sub-plots consisted of the cotton-cowpea (C/CP) and sunflower-cowpea (S/CP) crop rotation. The use of gypsum and organic matter contributed to decrease the soil salinity and sodicity. Cotton was not affected by the treatments, while the sunflower crop was favored by the application of amendments only in the second production cycle. Higher yields of cowpea in T5 treatment, during the 2009/2010 cycle, are indicative that higher doses of gypsum and organic matter applied in this treatment accelerate the reclamation process. For other treatments with amendment application there was a beneficial effect for this crop only in the second cycle, when the values of productivity were similar to T5.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT2-Phenylethanol (PE) is an aromatic alcohol with a characteristic odor of roses, widely used in food industry to modify certain aroma compositions in formulations with fruit, jam, pudding, and chewing gums, and also in cosmetic and fragrance industry. This compound occurs naturally in low concentrations in some essential oils from flowers and plants. An alternative to plants extraction are biotechnological processes. This study evaluated 2-phenylethanol’s production in cultivation of Saccharomyces cerevisiae in cassava wastewater originated from starch industry. The substrate was supplemented with glucose and L-phenylalanine in order to obtain higher 2-phenylethanol concentrations and better efficiency in glucose/2-phenylethanol conversion. It was performed using Rotatable Center Composite Design and response surface analysis. Cultures were performed under aerobic conditions in a batch system in Erlenmeyer flasks containing 50 mL of medium in shaker at 150 rpm and 24 ± 1 ºC. The highest PE values ​​were obtained with supplementation of 20.0 g.L-1 of glucose and 5.5 g.L-1 of L-phenylalanine, which has been experimentally validated, obtaining a PE production of 1.33 g.L-1 and PE/glucose yield factor of 0.070 g.g-1, equivalent to 74.3 and 89.7% ​​of desirability values according to the validated model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the study was to isolate, cultivate and characterize equine peripheral blood-derived multipotent mesenchymal stromal cells (PbMSCs). Peripheral blood was collected, followed by the isolation of mononuclear cells using density gradient reagents, and the cultivation of adherent cells. Monoclonal mouse anti-horse CD13, mouse anti-horse CD44, and mouse anti-rat CD90 antibodies were used for the immunophenotypic characterization of the surface of the PbMSCs. These cells were also cultured in specific media for adipogenic and chondrogenic differentiation. There was no expression of the CD13 marker, but CD44 and CD90 were expressed in all of the passages tested. After 14 days of cell differentiation into adipocytes, lipid droplets were observed upon Oil Red O (ORO) staining. Twenty-one days after chondrogenic differentiation, the cells were stained with Alcian Blue. Although the technique for the isolation of these cells requires improvement, the present study demonstrates the partial characterization of PbMSCs, classifying them as a promising type of progenitor cells for use in equine cell therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants in competition with weeds or not. The trial was performed on open environment conditions, with experimental units consisting of fiber glass vases with 150 dm³ filled with Red Yellow Latosol, previously fertilized. Treatments consisted in the cultivation of cassava plants isolated and associated to three weed species (Bidens pilosa, Commelina benghalensis and Brachiaria plantaginea). After cassava shooting, 15 days after planting, a removal of the weeds excess was performed, sown at the time of cassava planting, leaving six plants m-2 of B. pilosa and four plants m-2 of C. benghalensis and B. plantaginea. At 60 days after emergence (DAE), stomatal conductance (Gs), vapor pressure in the substomatal cavity (Ean), temperature gradient between leaf and air (ΔT), transpiration rate (E) and water use efficiency (WUE) were evaluated. B. pilosa showed greater capacity to affect growth of cassava plants. B. plantaginea is very efficient in using water, especially by presenting C4 metabolism, and remains competitive with cassava even under temporarily low water status. C. benghalensis, in turn, is not a good competitor for light and apparently is not the primary cause of water depletion in the soil. The effects of weeds, in this case, were more associated with the competition. However, they were found between moderate to low. This implies that the competition established at experimental level was low.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to evaluate characteristics associated with the photosynthetic activity of cassava plants under weed competition. The trial was carried out under field conditions, and experimental units consisted of 150 dm³ fiberglass boxes containing red yellow Latosol, previously corrected and fertilized. Treatments consisted in the cultivation of cassava plants which were free of weed competition and associated with three weed species: Bidens pilosa, Commelina benghalensis or Brachiaria plantaginea. After manioc sprouting started, 15 days after being planted, weeds that had been sown when manioc was planted were thinned, there were then eight plants left per experimental unit in accordance with specified treatments: cassava free of competition, cassava competing with B. pilosa, cassava competing with C. benghalensis and cassava competing with B. plantaginea. Sixty days after crop emergence leaf internal CO2 concentration (Ci), leaf temperature at the time of evaluation (Tleaf) and photosynthetic rate (A) were evaluated, also the CO2 consumption rate (ΔC) of cassava plants was calculated. A correlation matrix between variables was also obtained. All characteristics associated with photosynthesis in cassava plants were influenced by weed species. Cassava was more affected by B. pilosa and B. plantaginea in which concerns its exposition to solar radiation and water, while C. benghalensis seems to mostly affect the composition of incident light on the culture, allowing cassava to anticipate imposition when competing, even before it reaches harmful levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to evaluate different crops and plant species planted after soybeans for one year, in terms of their potential to inhibit the occurrence of weed species. The following crops that were planted as second crop after soybeans were evaluated: (1) corn (Zea mays) planted at spacing of 90 cm between rows, intercropped with Brachiaria ruziziensis in the inter-rows; (2) sunflower (Helianthus annuus); (3) crambe (Crambe abyssinica); (4) radish (Raphanus sativus); (5) rapeseed (Brassica napus); and (6) winter fallow - no plantation after soybeans. Phytosociological characterization of weed species was carried out at the pre-planting of soybeans in the following cropping season. Estimations of relative abundance, relative frequence, relative dominance and Importance Value Index were made for each species present. Areas were also intra-characterized by the diversity coefficients of Simpson and modified Shannon-Weiner, and areas were compared using the Jaccard similarity coefficient for presence-only, by multivariate cluster analysis. In the short‑term (a single cropping season), cultivation of winter crops do contribute for lower occurrence of weed species at the pre-planting of soybeans on the subsequent cropping season. The suppressive effects depend both on the species grown in the winter and in the amount of straw left on the soil by these winter crops. Radish was more efficient in inhibiting the occurrence of weed species and rapeseed showed composition of infestation similar to that observed at the area under fallow.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of the Roundup Ready(r) technology and the cultivation of a second crop influence the floristic composition of weed communities in Brazilian Central-West region cropping systems. This study has aimed to diagnose the dominant weed species in southwestern Goiás in areas of genetically-modified and conventional soybeans, using phytosociological and floristic surveys. Weed sampling was obtained by collecting all the plants present within a 0.5 m hollow frame, randomly thrown 20 times in each of thirty-five agricultural areas in the 2012/2013 harvest. Field survey was carried out in three periods: before desiccation for soybean sowing, before postemergence herbicide in soybean first application and before postemergence herbicide application in late harvest. A total of 525 m2 was inventoried and 3,219 weeds were collected, which included 79 species, 58 genera and 28 families. Families Poaceae, Asteraceae, Euphorbiaceae, Fabaceae, Amaranthaceae, were the most representative in the survey. Species Cenchrus echinatus, Glycine max, Chamaesyce hirta, Commelina benghalensis, and Alternanthera tenella stood out in importance. The RR+millet soybean treatment had the highest number of species (44), while the conventional soybean + sorghum treatment had the lowest number of species (18). The highest number of species was recorded in first sampling period. Treatments conventional soybean + maize and conventional soybean + millet showed higher similarity (70%), while treatments RR soybean + millet and conventional soybean + sorghum showed the least (51%). Species of difficult control were recorded in all cultivation systems analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with sense of place, the relation that we construct with our dwelling and the surrounding environment. The topic belongs to the field of human geography. Sense of place is deeply intertwined with the ideas of feeling at home and having a place where to return. I argue that narratives of life experience help us relate to the places we inhabit, go through, leave. My analysis concerns Lithuania Minor, the Lithuanian region lying by the border with Kaliningrad, and focuses in particular on Vilkyškiai, a village in the municipality of Pagėgiai. Most of the area’s original population disappeared in the war. After 1945, people from all over the country and the USSR settled here. This raised the prickly question of who belongs to the borderland. Refugees, migrants and settlers allow us to observe closely the development of sense of place and its main constituents. Through this analysis, I challenge the idea of people’s natural rights to places and shows how time, engagement in local-based cultural activities and recollection help foreigners become locals. To grasp the locals’ sense of place, I collected open, light-structured interviews and applied some elements of semantic analysis to interpret the materials. From my research, it emerges that the cultivation of the region’s cultural heritage and the practice of storytelling were crucial in making the respondents feel at home. Leaving aside all legalistic claims concerning the issue, I suggest that people belong to the land they dwell. I believe that their sense of place deserves consideration from the State and the other actors seeing them as migrants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple and inexpensive shaker/Erlenmeyer flask system for large-scale cultivation of insect cells is described and compared to a commercial spinner system. On the basis of maximum cell density, average population doubling time and overproduction of recombinant protein, a better result was obtained with a simpler and less expensive bioreactor consisting of Erlenmeyer flasks and an ordinary shaker waterbath. Routinely, about 90 mg of pure poly(ADP-ribose) polymerase catalytic domain was obtained for a total of 3 x 109 infected cells in three liters of culture

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La demande croissante en carburants, ainsi que les changements climatiques dus au réchauffement planétaire poussent le monde entier à chercher des sources d’énergie capables de produire des combustibles alternatifs aux combustibles fossiles. Durant les dernières années, plusieurs sources potentielles ont été identifiées, les premières à être considérées sont les plantes oléagineuses comme source de biocarburant, cependant l’utilisation de végétaux ou d’huiles végétales ayant un lien avec l’alimentation humaine peut engendrer une hausse des prix des denrées alimentaires, sans oublier les questions éthiques qui s’imposent. De plus, l'usage des huiles non comestibles comme sources de biocarburants, comme l’huile de jatropha, de graines de tabac ou de jojoba, révèle un problème de manque de terre arable ce qui oblige à réduire les terres cultivables de l'industrie agricole et alimentaire au profit des cultures non comestibles. Dans ce contexte, l'utilisation de microorganismes aquatiques, tels que les microalgues comme substrats pour la production de biocarburant semble être une meilleure solution. Les microalgues sont faciles à cultiver et peuvent croitre avec peu ou pas d'entretien. Elles peuvent ainsi se développer dans des eaux douces, saumâtres ou salées de même que dans les terres non cultivables. Le rendement en lipide peut être largement supérieur aux autres sources de biocarburant potentiel, sans oublier qu’elles ne sont pas comestibles et sans aucun impact sur l'industrie alimentaire. De plus, la culture intensive de microalgues pour la production de biodiesel pourrait également jouer un rôle important dans l'atténuation des émissions de CO2. Dans le cache de ce travail, nous avons isolé et identifié morphologiquement des espèces de microalgues natives du Québec, pour ensuite examiner et mesurer leur potentiel de production de lipides (biodiesel). L’échantillonnage fut réalisé dans trois régions différentes du Québec: la région de Montréal, la gaspésie et le nord du Québec, et dans des eaux douces, saumâtres ou salées. Cent souches ont été isolées à partir de la région de Montréal, caractérisées et sélectionnées selon la teneur en lipides et leur élimination des nutriments dans les eaux usées à des températures différentes (10 ± 2°C et 22 ± 2°C). Les espèces ayant une production potentiellement élevée en lipides ont été sélectionnées. L’utilisation des eaux usées, comme milieu de culture, diminue le coût de production du biocarburant et sert en même temps d'outil pour le traitement des eaux usées. Nous avons comparé la biomasse et le rendement en lipides des souches cultivées dans une eau usée par apport à ceux dans un milieu synthétique, pour finalement identifié un certain nombre d'isolats ayant montré une bonne croissance à 10°C, voir une teneur élevée en lipides (allant de 20% à 45% du poids sec) ou une grande capacité d'élimination de nutriment (>97% d'élimination). De plus, nous avons caractérisé l'une des souches intéressantes ayant montré une production en lipides et une biomasse élevée, soit la microalgue Chlorella sp. PCH90. Isolée au Québec, sa phylogénie moléculaire a été établie et les études sur la production de lipides en fonction de la concentration initiale de nitrate, phosphate et chlorure de sodium ont été réalisées en utilisant de la méthodologie des surfaces de réponse. Dans les conditions appropriées, cette microalgue pourrait produire jusqu'à 36% de lipides et croitre à la fois dans un milieu synthétique et un milieu issu d'un flux secondaire de traitement des eaux usées, et cela à 22°C ou 10°C. Ainsi, on peut conclure que cette souche est prometteuse pour poursuivre le développement en tant que productrice potentielle de biocarburants dans des conditions climatiques locales.